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Abstrat. - We prove the Hawking e�et for a gravitational ollapse of harged star, stationary

in the past and ollapsing to a blak hole in the future. In the past, the ground state of the

Dira �elds is given by a KMS state with unspei�ed temperature.

1 Introdution.

This artile extends our previous investigation [14℄ about the Hawking e�et [11℄ for the Dira

�eld. In [14℄ we onsidered a harged star stationnary in the past, and ollapsing to a blak

hole in the framework of the semilassial approximation where the bak-reation of the �eld on

the metri is negleted. Furthermore, the ground state in the past was given by the Boulware

vauum. In this new work and always for the semilassial regime, we study the same ollapsing

star, but in the past, we onsider a ground state given by a KMS state with unspei�ed tem-

perature. In the ase of ollapse in expending universe the temperature physially relevant is

that of Gibbons-Hawking assoiated to the osmologial horizon [10℄. As in [14℄, we prove the

emergene of thermal state oming from the future blak hole whih is independent of the story

of the ollapse and the nature of the star surfae. Moreover, with the results of this paper and

the previous, we also remark that the hoie of the ground state in the past does not modify

the arateristi of the ux of partiles oming from the horizon of the future blak hole.

During the ollapse the star beomes a blak hole. This blak hole is desribed in term the

Shwarzshild oordinates (t; r; !) as the globally hyperboli manifold (M

bh

; g), (see for example

[12℄, [16℄, [20℄)
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where Q 2 R, M > 0 and � � 0 are respetively the eletri harge, the mass, the osmologial
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with �

0

, �

+

the surfae gravity at the blak hole horizon and at the osmologial horizon. If

the osmologial onstant � = 0, then (M

bh

; g) desribes the asymptotially at spae time of

Reissner-Nordstr�m with
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We introdue the Regge-Wheeler oordinate suh that
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With this new radial oordinate, the horizons are pushed away at in�nities:
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Hene, we de�ne the spae time outside the ollapsing star with mass M > 0 and r

�

-radius

z(t); t 2 R in an expanding or asymptotially at universe, suh that :

M

oll

:=

�

(t; r

�

; !) 2 R

t

� R

r

�

� S

2

!

; r

�

� z(t)

	

: (4)

The reasonable assumptions of generi ollapsing examined in [1℄ leads to the following properties

for z(t):

z 2 C
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Aording to the Birkho� theorem and sine the spherial symmetry of the star is maintained

during the ollapse, the metri on M

oll

is just the Lorentzian metri g de�ned in (1).

On (M

oll

; g) we onsider the Dira equation for a fermion of mass m > 0 and harge q 2 R:

i
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�

r
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	+ iq

Q

r

	�m	 = 0: (7)

The term

Q

r

is the eletromagneti potential sine we take eletromagneti interations between

the �eld and the harged star into aount. Here 

�

are the Dira matries in urved spae time

and

�

r

�

the spinor �elds ovariant derivative. Our model of the star is very simple and very

onvenient sine our star is in fat a mirror. This assumptions enable us to avoid to treat the

di�erent interation and behavior of the uid inside the star during the ollapse. Therefore, on

the star surfae,
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where n

j

is the outgoing normal of subset of R

t

� R

r

�

� S

2

!

and � the hiral angle. We suppose

for the tehnial reasons that � 2 R if r

+

< +1, and � 6= (2k + 1)�, k 2 Z if r

+

= +1. This

onservative boundary ondition is the generalized MIT bag boundary ondition [5℄ auses a

reexion of the �elds on the star surfae.

In the seond part of this work, we state the theorem giving a solution of the mixed hyperboli

problem (7)-(8) with the help of a propagator. In this same part, we also introdue the useful

wave operators outside the future blak-hole. In the �fth part, we state and interpret the main

theorem of this work using the Quantum Field Theory. To do this, we onstrut the loal algebra

of observable U(M

oll

) as in [6℄ and use the wave operators of the seond part. Finally in the

last setion, we expose the mathematial proof of the main theorem of this artile.

2 Classial �elds.

2.1 Dira equation.

By using the de�nition (1) and a alulation from [2℄ and [17℄ for equation (7), we set in a

hamiltonian form the mixte hyperboli mixed problem on (M
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; g) related to (7) and (8) :

�

t

	 = iD

t

	; z(t) < r

�

; (9)

_z

0

� 

1

p

1� _z

2

	(t; z(t)) = ie

i�

5

	(t; z(t)) (10)

	(t = s; :) = 	

s

(:) 2 L

2

s

; (11)

where L

2

t

is the energy spae suh that

�

L

2

t

:= L

2

(℄z(t);+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

; k:k

t

�

(12)

and

D

t

= �

qQ

r

+ �

1

 

�

r

�

+

F (r)

r

+

F

0

(r)

4

!

+

p

F (r)

�

�

2

r

(�

�

+

1

2

ot �) +

�

3

r sin �

�

'

+ �

4

�

; (13)

�

1

:= i

0



1

= iDiag(�1; 1; 1;�1); �

2

:= i

0



2

; �

3

:= i

0



3

; �

4

:= �m

0

; (14)
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Here the Dira matries 
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We introdue the following notation
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Aording to proposition III.2 in [2℄, a unique solution 	(t) of (9), (10) and (11) an be expressed

with the propagator U(t; s):
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Moreover, U(t; s) an be extended in an isometri strongly ontinuous propagator from L

2

s

onto

L

2

t

.

In the same way, we onsider the hyperboli problem related to (7) on (M
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; g):
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In [13℄, we prove that the hamiltonian D
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is self adjoint with dense domain
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Hene by the spetral theorem, we have:
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2.2 Sattering for Dira �elds by an eternal blak-hole

Our result on the Hawking e�et follows from a asymptoti analysis for the propagator U(0; T )

as T ! +1. As the star beomes a blak hole as T ! +1, we strongly use that the dynamis

are simplier in viinity of the two following asymptoti regions: r

�

! �1 (blak hole horizon)

and r

�

! +1 (osmologial horizon when � > 0 or the asymptotially at spae time when

� = 0 ). This is the reason why we introdue the wave operators for the eternal harged blak-

hole. The existene and the asymptoti ompleteness for these operators are already been the

subjet of two previous works: [13℄ and [15℄. To investigate the behavior of the Dira �elds near
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the blak hole horizon (resp. osmologial horizon � > 0 or asymptotially at region � = 0),

we hoose a ut funtion �
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Sine the matrix �

1

is diagonal, we remark that equations (24) are the shift equations aording

to the omponents. Hene, we de�ne the subspaes of outgoing and inoming waves L
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Hene, we de�ne the wave operatorsW
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The spae-time is asymptotially at at the in�nity when � = 0. Therefore, we ompare the

solutions of (9) on L

2

BH

with the solution 	

!

of the Dira equation on Minkowski spae-time

with spherial oordinates (�; !) 2 R
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Sine the omparison of the solution of (9) on L

2

BH

with the solution of (29) on L

2

0;!

involves

matrix-valued long-range perturbations, it is neessary to modify the free dynami e

itD

0;!
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in ours previous works [13℄ and [15℄. Given U

0;!

(t) the Dollard-modi�ed propagator, then we

de�ne for all 	 2 L
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Finally aording to [13℄, [15℄ and [14℄, we state the theorem :

Theorem 2.1

The wave operators W
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:

3 Quantum Fields

3.1 Constrution of the Dira Quantum Fields

To desribe the Quantum e�ets of the ollapse, we need to introdue the framework of the

Quantum Field Theory. For a general disussion on the Quantum Field Theory in urved

spaetime, we ite the following and non exhaustive list of books: [3℄, [8℄, [18℄, [21℄. This theory

are usually de�ned on at spae-time. In Minkowski spae-time, we have a natural hoie for

the vauum state: the vauum related to the inertial observators. In this ase, it is suÆient to

onstrut a �eld operator whih satis�es a given �eld equation on a Hilbert spae orresponding

6



to an inertial observator (we hoose a partiular Cauhy hypersurfae of the spae-time). Indeed,

thanks to the Lorentz transformation, this onstrution is equivalent for all inertial observators.

But in our ase, we deal with a urved spae-time and in general manifolds, hene we have not

the equivalent Lorentz transformations and any preferential hoie for the vauum. Then, we

adopt the point of view introdued by J. Dimok in [6℄ and [7℄. In [7℄ and for the spin 1/2 �elds,

the author suggests a onstrution for loal observables to globally hyperboli manifolds whih

is independent (up to a net isomorphism) of the representation of the CAR, the hoie of the

spin struture and the Cauhy hypersurfae.

Before to explain this onstrution, we de�ne on a omplex Hilbert spae (H; < :; : >

H

) the

Fermi-Dira Fok spae desribing the state with an arbitrary number of non interating harged

fermions. Given a Dira-type equation satis�ed by the �eld f with Hamiltonian H de�ned on

H:

�

t

f = iH f: (31)

We hoose the spetral projetors P

+

and P

�

suh that

P

+

:= 1

℄�1;0℄

(H ); P

�

:= 1

[0;+1[

(H ): (32)

Then, we introdue the Fermi-Dira-Fok spae for (H; < :; : >

H

):

F(H) :=

+1

M

n;m=0

F

(n;m)

; F

(n;m)

(H) := F

(n)

(H

+

)
 F

(m)

(H

�

); (33)

where

F

(0)

(H

+

) := C ; F

(0)

(H

�

) := C ; F

(n)

(H

+

) :=

n

^

k=1

H

+

; F

(m)

(H

�

) :=

m

^

k=1

�H

�

(34)

and

H = H

+

� H

�

; H

+

:= P

+

H; H

�

:= P

�

H: (35)

Here, � is the harge onjugation (see [19℄ setion 1.4.6). On F(H), we introdue a(P

+

f)

and a

�

(P

+

f) the partile annihilation and reation operators and also b(P

�

f), b

�

(P

�

f) the

anti-partile annihilation, reation operators. We an �nd the their rigorous de�nition in the

appendix A in [2℄ or in the book [4℄. Therefore, we de�ne the anti-linear quantized Dira �eld

operator 	

	

	 and its linear adjoint 	

	

	

�

:

f 2 H 7�!	

	

	(f) := a(P

+

f) + b

�

(�P

�

f) 2 L (F(H)) ; (36)

and

f 2 H 7�!	

	

	

�

(f) := a

�

(P

+

f) + b(�P

�

f) 2 L ((F(H)) :

Moreover, these operators are bounded

k	

	

	(f)k = kfk; k	

	

	

�

(f)k = kfk; f 2 H
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and thanks to the lassial properties of the reations and annihilation operators, it satis�es the

anonial anti-ommutation relations (CAR):

	

	

	(f)	

	

	(g) +	

	

	(g)	

	

	(f) = 0; 	

	

	

�

(f)	

	

	

�

(g) +	

	

	

�

(g)	

	

	

�

(f) = 0; f; g 2 H

	

	

	

�

(f)	

	

	(g) +	

	

	(g)	

	

	

�

(f) =< f; g >

H

1

We onsider the C

�

-algebra U(H) generated by the �eld operators 	

	

	

�

(f)	

	

	(g), with f; g 2 H and

introdue the KMS state !

Æ;�

KMS

suh that for f; g 2 H:

!

Æ;�

KMS

(	

	

	

�

(f)	

	

	(g)) :=< K

ms

�;�

(H )f; g >

H

; (37)

with, for all x 2 R

K

ms

�;�

(x) := �e

�x

(1 + �e

�x

)

�1

; � := e

�Æ

; � > 0; Æ 2 R: (38)

On the sub-algebra U(H

+

) (resp. U(H

�

)) of U(H), the state !

Æ;�

KMS

provides a desription of an

thermodynamial equilibrium state for a gas noninterating Fermi partiles (resp. anti-partiles)

with temperature 1=� > 0, hemial potential Æ (resp. �Æ) and ativity � (resp. 1=�).

Now, aording to the work of J. Dimok [7℄, we onstrut the algebra of loal observables

on a given globally hyperboli urved spae-time M with a foliation by a family of Cauhy

hypersurfaes �

t

:

M =

[

t2R

�

t

:

We onsider a �xed hypersurfaes �

t

and put H = L(�

t

)

4

. Using the previous de�nition of

Dira quantum �eld (36), we de�ne on L(�

t

)

4

the quantized Dira �eld 	

	

	

a

and U(L(�

t

)

2

) the

C

�

-algebra generated by 	

	

	

�

a

(�

1

)	

	

	

a

(�

2

), with �

1

;�

2

2 L(�

t

)

4

. Moreover we introdue the

following operator

S

A

: � 2 C

1

0

(M)

4

7�! S

A

� :=

Z

R

P (t; s)�(s)ds 2 L(�

t

)

4

; (39)

where P (t; s) is the isometri propagator from L(�

s

)

4

onto L(�

t

)

4

, related to the Dira �eld in

M

oll

. Then, we de�ne the loal quantum �eld inM by the operator:

	

	

	

A

: � 2 C

1

0

(M)

4

7�!	

	

	

A

(�) := 	

	

	

a

(S

A

�); (40)

and, for any open set O �M, we introdue U(O) the C

�

-algebra generated by 	

	

	

A

(�

1

)	

	

	

A

(�

2

),

supp(�

j

) � O, j = 1; 2. Finally, we have:

U(M) = adh

 

[

O

U(O)

!

:

Hene by J. Dimok [7℄, this onstrution is independent of the representation of the CAR, the

hoie of the spin struture ontained in P (t; s) and the �xed Cauhy hypersurfae �

t

with

t 2 R.

Now, we apply this proedure to the spae time outside the ollapsing starM

oll

but also to

the spae times near the future blak hole M

bh

and at the in�nity (r

�

! +1) M

at

or M

bh

,

8



with the intention of interpreting the Hawking e�et with the help of the wave operators (27),

(28) and (30).

For the stationary spae time M

oll

we have the following foliation :

M

oll

=

[

t2R

�

t

; �

t

:= ftg�℄z(t);+1[

r

�

�S

2

!

:

We onsider �

0

, and we put

H := L

2

(℄z(0);+1[�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

= L

2

0

; H := D

0

: (41)

Using the previous onstrution, we de�ne on L

2

0

the quantized Dira �eld 	

	

	

0

= 	

	

	

a

and U(H)

the C

�

-algebra generated by 	

	

	

�

0

(�

1

)	

	

	

0

(�

2

), with �

1

;�

2

2 H. Aording to (39), we introdue

S

oll

= S

A

with P (0; t) = U(0; t) the propagator de�ned in proposition 2.1. Then, we de�ne the

loal quantum �eld in M

oll

by the operator

	

	

	

oll

: � 2 C

1

0

(M

oll

)

4

7�!	

	

	

oll

(�) := 	

	

	

0

(S

oll

�) (42)

and also U(M

oll

) the losed union for all open set O �M

oll

of U(O) the C

�

-algebra generated

by 	

	

	

�

oll

(�

1

)	

	

	

oll

(�

2

), supp(�

j

) � O, j = 1; 2. Then, aording to (37) and (41), we de�ne on

U(M

oll

) a ground state !

M

oll

as following:

!

M

oll

(	

	

	

�

oll

(�

1

)	

	

	

oll

(�

2

)) := !

Æ

0

;�

0

KMS

(	

	

	

�

0

(S

oll

�

1

)	

	

	

0

(S

oll

�

2

)) (43)

=< K

ms

�

0

;�

0

(D

0

)S

oll

�

1

; S

oll

�

2

>

H

; �

1

;�

2

2 H (44)

with

�

0

:= e

�

0

Æ

0

; Æ

0

2 R; �

0

> 0: (45)

Indeed, we suppose that our star whih is stationary in the past ollapses in a bath of fermions

and anti-fermions with temperature �

�1

0

> 0.

We desribe the quantum �eld at the horizon of future bak-hole. We onsider the stationary

spae-time M

bh

with the following foliation

M

bh

=

[

t2R

�

t

; �

t

:= ftg � R

r

�

� S

2

!

:

By using the same proedure as above we onstrut U

 

(M

bh

) the losed union for all open set

O �M

bh

of U(O) the C

�

-algebra generated by 	

	

	

 

(	

1

)	

	

	

�

 

(	

2

), �

1

;�

2

2 L

2

 

where

	

	

	

 

: � 2 C

1

0

(M

bh

)

4

7�!	

	

	

 

(�) := 	

	

	

�

(S

 

�); (46)

and

S

 

:= S

A

; P (0; t) := e

�itD

 

: (47)

Here 	

	

	

�

(�) with � 2 L

2

 

is the quantum Dira �eld de�ned on the hypersurfae R

r

�

� S

2

!

. By

using (37), we onsider the Hawking thermal state:

!

Æ;�

Haw

(	

	

	

�

 

(�

1

)	

	

	

 

(�

2

)) := !

Æ;�

KMS

(	

	

	

�

�

(S

 

�

1

)	

	

	

�

(S

 

�

2

)); �

1

;�

2

2 C

1

0

(M

bh

)

4

(48)

=< K

ms

�;�

(D

 

)S

 

�

1

; S

 

�

2

>

L

2

 

; (49)
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with

� := e

�Æ

; Æ 2 R; � > 0: (50)

Finally we introdue the quantum �elds at in�nity when r

�

! +1. Aording to � whih is

respetively positive or zero (osmologial horizon or asymptotially at spae-time), we onsider

the stationary spae-times

M

bh

= R

t

� R

r

�

� S

2

!

; M

at

:= R

t

� R

+

r

�

� S

2

!

:

As above, using the Fermi-Dira Fok quantization on R

r

�

� S

2

!

or R

+

r

�

� S

2

!

, we de�ne the

�elds 	

	

	

�;+

(�

1

) with �

1

2 L

2

�;!

or 	

	

	

0;+

(�

1

) with �

1

2 L

2

0;!

. Hene, we onstrut U

!

(M

bh

)

and U

!

(M

at

). The algebra U

!

(M

bh

) is the losed union for all open set O � M

bh

of the

C

�

-algebras U

!

(O) generated by 	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

) with �

1

; �

2

2 L

2

�;!

	

	

	

�;!

: � 2 C

1

0

(M

bh

)

4

7�!	

	

	

�;!

(�) := 	

	

	

�;+

(S

�;!

�); � > 0 (51)

and

S

�;!

:= S

A

; P (0; t) := e

�itD

�;!

; � > 0: (52)

As to the algebra U

!

(M

at

), it is the losed union for all O �M

at

of the C

�

-algebras U

!

(O)

generated by 	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

) with �

1

;�

2

2 L

2

0;!

,

	

	

	

0;!

: � 2 C

1

0

(M

at

)

4

7�!	

	

	

0;!

(�) := 	

	

	

0;+

(S

0;!

�) (53)

and

S

0;!

:= S

A

; P (0; t) := U

0;!

(�t); (54)

where U

0;!

is the Dollard-modi�ed propagator. With (37), the thermal states on eah algebras

U

!

(M

bh

) and U

!

(M

at

) are given by

8�

1

;�

2

2 C

1

0

(M

bh

); !

Æ

0

;�

0

KMS

(	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

)) =< K

ms

�

0

;�

0

(D

�;!

)S

�;!

�

1

; S

�;!

�

2

>

L

2

�;!

;

with � > 0, and

8�

1

;�

2

2 C

1

0

(M

at

); !

Æ

0

;�

0

KMS

(	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

)) =< K

ms

�

0

;�

0

(D

0;!

)S

0;!

�

1

; S

0;!

�

2

>

L

2

0;!

:

3.2 Hawking e�et

The state

!

M

oll

(	

	

	

�

oll

(�

1

)	

	

	

oll

(�

2

)); �

j

2 C

1

0

(M

oll

)

4

; j = 1; 2;

gives the informations about the quantum utuations in a region ofM

oll

. But, we are interested

in the investigation of this previous state at last moment of gravitational ollapse when the

detetor is �xed with the respet to the variables (r

�

; !). As this ollapsing star beomes a

blak hole, the detetor at the rest reeives the informations from the reation of the blak hole

when this proper time t =1. Hene, we put

�

T

j

(t; r

�

; !) := �

j

(t� T; r

�

; !); �

j

2 C

1

0

(M

oll

)

4

; j = 1; 2;

and state the main theorem about the behavior of !

M

oll

at the last time of the ollapse :
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Theorem 3.1

Given �

j

2 C

1

0

(M

oll

)

4

; j = 1; 2, then we have for � � 0,

lim

T!+1

!

M

oll

(	

	

	

�

oll

(�

T

1

)	

	

	

oll

(�

T

2

)) = !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))

+ !

Æ

0

;�

0

KMS

(	

	

	

�

�;!

(


�

�;!

�

1

)	

	

	

�;!

(


�

�;!

�

2

));

with

T

Haw

=

1

�

=

2�

�

0

; Æ =

qQ

r

0

:

Let us interpret the previous theorem.We know that the state !

M

oll

represents the response

of a detetor at the rest in Shwarzshild variables at time T . This detetor is initially put in

the state that orresponds for a stati observer to a fermioni gas, where the partiles does not

interat between themselves and de�ned by the onstants of temperature �

0

> 0 and hemial

potential Æ

0

.

As T = +1, the detetor measures the utuation of the quantum utuations related to

!

M

oll

when the star beomes a blak hole. In this situation, the detetor measures two types

of informations: about the �elds oming from the past in�nity (and falling into the blak hole)

and about the �elds oming from the the future horizon of the blak hole (going to the future

in�nity).

Sine the state !

Æ

0

;�

0

KMS

ontains the wave operators 


�

�;!

in its de�nition, !

Æ

0

;�

0

KMS

gives the

information about the �elds of the �rst type. It means that the detetor measure a quantum

utuation oming from the past in�nity whih is interpreted by a stati observer as a ux of

partiles with the same harateristis that the initial ground state.

In the same way, sine !

Æ;�

Haw

ontains the wave operators 


�

 

in its de�nition, this state

gives the informations about the �elds oming from the future blak hole horizon. Indeed, the

detetor measures the emergene of the thermal state with temperature

T

Haw

=

1

�

=

2�

�

0

whih is interpreted by a stati observer as ux of partiles and anti-partiles with harge density

�

Haw

:=

1

�

qÆ =

q

2

Q

�r

0

:

We remark that the result is independent of the story of the ollapse, the boundary ondition

(the harateristi of the star surfae) and also the ground state sine we proved the same result

in [14℄ by supposing that the ground state is Boulware type in the past. This is a no hair result.

Moreover, the previous theorem is valid when � � 0. When � > 0, we onsider the DeSitter-

Reissner-Nordstr�m spae time outside the star before and during the ollapse. Let us reall that

this urved spae time has a osmologial horizon at in�nity. In this ase, G. W. Gibbons and

S. W. Hawking have proved in [10℄ that an observer following any time like geodesis measures

an isotropi bakground of thermal radiation oming from the past osmologial horizon with

the (Gibbons-Hawking) temperature

T

GH

=

2�

�

+

:
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Here �

+

is the surfae gravity at the osmologial horizon de�ned in (2). Hene, a stati

observer interprets this radiation as ux of partiles oming from the past osmologial horizon

with temperature T

GH

= �

�1

GH

and hemial potential Æ

GH

. Hene, we de�ne the ground state

!

M

oll

outside the ollapsing star. On U(M

oll

) and for all �

1

;�

2

2 L

2

0

we have

!

M

oll

(	

	

	

�

oll

(�

1

)	

	

	

oll

(�

2

)) := !

Æ

0

;�

0

KMS

(	

	

	

�

0

(S

oll

�

1

)	

	

	

0

(S

oll

�

2

))

=< K

ms

�

0

;�

0

(D

0

)S

oll

�

1

; S

oll

�

2

>

L

2

0

;

=<W

�

�;D

K

ms

�

0

;�

0

(D

0

)S

oll

�

1

;W

�

�;D

S

oll

�

2

>

L

2

�;!

;

=< K

ms

�

0

;�

0

(D

�;!

)S

�;!

W

�

�;D

�

1

; S

�;!

W

�

�;D

�

2

>

L

2

�;!

= !

Æ

0

;�

0

KMS

(	

	

	

�

�;!

(W

�

�;D

�

1

)	

	

	

�;!

(W

�

�;D

�

2

));

where W

�

�;D

is the wave operator linking the dynami outside the star before the beginning of

the ollapse and the free dynami at the past osmologial horizon (see (80), (142) and (143) for

the de�nition). Hene, in the ase of osmologial model with a positive osmologial onstant,

the only physially relevant hoie for the �

0

and Æ

0

is

�

0

= �

GH

= T

�1

GH

=

�

+

2�

; Æ

0

= Æ

GH

:

4 Proof of theorem 3.1.

This setion is devoted to the proof of theorem 3.1. In other to demonstrate this previous

theorem setion 4.3, we prove the following sharp result:

Theorem 4.1

Given f 2 L

2

BH

, if � � 0, then

lim

T!+1

< K

ms

�

0

;�

0

(D

0

)U(0; T )f;U (0; T )f >

H

=< K

ms

�

0

;�

0

(D

�;!

)


�

�;!

f;


�

�;!

f >

L

2

�;!

+ < K

ms

�;�

(D

 

)


�

 

f;


�

 

f >

L

2

 

(55)

with

� = e

�Æ

; Æ :=

qQ

r

0

� =

2�

�

0

; 


�

 

:=

�

W

�

 

�

�

; 


�

�;!

:=

�

W

�

�;!

�

�

; 


�

0;!

:=

�

W

�

0;!

�

�

;

where W

�

 

, W

�

�;!

, W

�

0;!

are the wave operators respetively de�ned in (27), (28) and (30).

To prove the limit (55), we use the spherial symmetry property of the geometrial framework.

Indeed, we introdue the spin-weighted harmonis to redue our study to a family of one dimen-

sional problems. This is the purpose of the next setion.

4.1 Redution to a simplier problems thanks to the spherial symmetry.

Given Y

l

�

1

2

;n

the spin-weighted harmonis (see [9℄, [13℄) suh that the families

n

Y

l

1

2

;n

; (l; n) 2 I

o

;

n

Y

l

�

1

2

;n

; (l; n) 2 I

o

; I :=

�

(l; n) : l �

1

2

2 N; l � jnj 2 N

�

;
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form a Hilbert basis of L

2

(S

2

!

) and eah Y

l

sn

, s = �1=2 satis�es the reurrene relations,

�

�

Y

l

sn

(!)�

n� s os �

sin �

Y

l

sn

(!) =

�

�

�

�

�i

p

(l � s)(l � s+ 1)Y

l

s�1;n

(!); �l > �s:

0; l = �s:

; (56)

�

'

Y

l

sn

(!) = �inY

l

sn

(!): (57)

Afterwards, we introdue the following Hilbert spaes:

�

L

2

t

:= L

2

(℄z(t);+1[

r

�

; dr

�

)

4

; k:k

t

�

; 0 � t (58)

�

L

2

R

:= L

2

(R

r

�

; dr

�

)

4

; k:k

�

; (59)

L

2

BH

:= L

2

(R

r

�

; r

2

F

1=2

(r)dr

�

)

4

= P

r

L

2

R

; (60)

with

P

r

: 	 7! r

�1

F

�1=4

	: (61)

So, we express L

2

t

and L

2

BH

as a diret sum:

L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

; L

2

BH

=

M

(l;n)2I

E

�

ln

L

2

R

: (62)

where,

E

�

ln

: 	

ln

2 L

2

t

7! e

�i

�

2



5

P

r

	

ln




4

Y

ln

2 L

2

t

(63)

with

v 


4

u := (u

1

v

1

; u

2

v

2

; u

3

v

3

; u

4

v

4

); 8u; v 2 C

4

;

Y

ln

:=

�

Y

l

�

1

2

;n

; Y

l

1

2

;n

; Y

l

�

1

2

;n

; Y

l

1

2

;n

�

: (64)

De�ning the following restrition operator R

�

ln

suh that

R

�

ln

: 	 2 L

2

t

7! e

i

�

2



5

P

�1

r

	

ln

2 L

2

t

; 	

ln

:=< 	; Y

ln

> (65)

and using (56), (57) for s = �1=2, we obtain the following deompositions:

D

t

=

M

(l;n)2I

E

�

ln

D

V

l;�

;t

R

�

ln

�

qQ

r

0

; (66)

D

V

l;�

;t

:= �

1

�

r

�

+ V

l;�

; V

l;�

= qQ

�

1

r

0

�

1

r

�

�

p

F (r)

�

mA

�

+

i

r

�

2

(l + 1=2)

�

; (67)

A

�

:=

�

0 a

�

�a

�

0

�

; a

�

:= diag(ie

i�

; ie

i�

); Z(t) =

s

1� _z(t)

1 + _z(t)

; (68)

D(D

V

l;�

;t

) =

�

	 2 L

2

t

; D

V

l;�

;t

	 2 L

2

t

;

Z(t)	

2

(z(t)) = 	

4

(z(t)); 	

1

(z(t)) = �Z(t)	

3

(z(t))g : (69)

For � 2 L

2

(B; dr

�

)

4

, B � R, we de�ne a L

2

-extension suh that

k�k

L

2

(B; dr

�

)

4

= k[�℄

L

k ; [�℄

L

(r

�

) :=

�

�(r

�

) r

�

2 B

0 r

�

2 R nB

:

13



In the same way, we introdue

0 � t; H

1

t

:=

�

� 2 L

2

t

; �

r

�

� 2 L

2

t

	

; H

1

R

:=

�

� 2 L

2

R

; �

r

�

� 2 L

2

R

	

;

and a H

1

-extension suh that for � 2 H

1

t

we have,

[�℄

H

2 H

1

R

; [�℄

H

(r

�

) :=

�

�(r

�

) r

�

2℄z(t);+1[

r

�

�(2z(t) � r

�

) r

�

2 Rn℄z(t);+1[

r

�

:

For the dynami D

V

l;�

;t

, we set proposition VI.2 in [2℄ whih gives a unique solution expressed

with the propagator U

V

l;�

(t; s) of:

�

t

� = iD

V

l;�

;t

�; t 2 R; r

�

> z(t); (70)

�

4

(t; z(t)) = Z(t)�

2

(t; z(t)); �

1

(t; z(t)) = �Z(t)�

3

(t; z(t)); (71)

�(t = s; :) = �

s

(:) 2 L

2

s

: (72)

Proposition 4.1

If �

s

2 D(D

V

l;�

;s

), then there exists a unique solution

[�(:)℄

H

= [U

V

l;�

(:; s)�

s

℄

H

2 C

1

(R

t

; L

2

R

) \ C

0

(R

t

;H

1

R

)

of (70), (71) and (72) with

�(t) 2 D(D

V

l;�

;t

):

Moreover,

k�(t)k

t

= k�

s

k

s

(73)

and U

V

l;�

(t; s) an be extended in an isometri strongly ontinuous propagator from L

2

s

onto L

2

t

.

The operators (63) and (65) are very useful to express U(t; s) de�ned in proposition (2.1) with

the help of U

V

l;�

(t; s) :

U(t; s) = e

i(s�t)

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

(t; s)R

�

ln

: L

2

s

=

M

(l;n)2I

E

�

ln

L

2

s

! L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

: (74)

Given a potential V 2 L

1

(R

r

�

) and an interval B := (a;+1) or B := (�1; a) and V 2

L

1

(R

r

�

), then, we de�ne on L

2

(B)

4

the self-adjoint operator D

V;B

with the dense domain

D(D

V;B

) suh that

D

V;B

= �

1

�

r

�

+ V; (75)

D(D

V;B

) =

�

� 2 L

2

(B)

4

; D

V;B

� 2 L

2

(B)

4

; r

�

2 �B ) ~n

1

�(r

�

) = i�(r

�

)

	

; (76)

where �

1

is given by (14) and ~n is the outgoing normal of B. Using Kato-Rellih and spetral

theorem, it is easy to �nd an unique solution of

�

t

� = iD

V;B

�; �(0) = 	

0

: (77)

using the propagator U

V;B

(t):

14



Proposition 4.2

Given �

0

2 D(D

V;B

), then there exists a unique solution

�(:) = U

V;B

(:)�

0

2 C

0

(R

t

;D(D

V;B

)) \ C

1

(R

t

; L

2

(B)

4

)

and

k�(t)k = k�

0

k:

Moreover, U

V;B

(t) an be extended, by density and ontinuity, in strongly unitary group on

L

2

(B)

4

.

Thus, we an express the propagator U(t) de�ned in proposition 2.2 with the help of U

V;B

(t)

and the operators (63) and (65):

U(t) = e

�it

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

;R

(t)R

�

ln

: (78)

Now, we introdue the useful wave operators for the next part. We hoose a ut-o� funtion

� 2 C

1

(R

r

�

), suh that

9 a; b 2 R; �1 < a < b < +1 �(r

�

) =

�

1 r

�

< a

0 r

�

> b

; (79)

and the subspaes L

2+

R

and L

2�

R

of L

2

R

with the following properties :

L

2+

R

=

�

� 2 L

2

R

; �

2

� �

3

� 0

	

; L

2�

R

=

�

� 2 L

2

R

; �

1

� �

4

� 0

	

:

Hene, we state the lemma:

Lemma 4.1

Given V = V

l;�

to simplify the notation.The wave operators

W

�

0;R

= s� lim

t!�1

U

0;R

(�t)�U

V;R

(t); in L

2

R

W

�

V;[z(0);+1[

= s� lim

t!�1

U

V;[z(0);+1[

(�t)(1 � �)U

V;R

(t) in L

2

0

(80)

exist and are independent of � satisfying (79). Moreover

Ran

�

W

�

0;R

�

= L

2�

R

; Ran

�

W

�

V;[z(0);+1[

�

= P

a

�

D

V;[z(0);+1[

�

L

2

0

(81)

where P

a

�

D

V;[z(0);+1[

�

is the projetor on the absolutely ontinuous subspae of D

V;[z(0);+1[

.

Proof: See lemma 6.3 in [14℄.

By using the operators (63) and (65), we easily remark that

P

r

�

W

�

 

�

�

=

M

(l;n)2I

E

�

ln

W

�;l

0;R

R

�

ln

: (82)
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4.2 Proof of theorem 4.1

Firstly, we desribe the main ideas of the demonstration. Our proof uses some results from

some previous works: the sharp study of the bakward propagator U(0; T ) [14℄, the sattering

theory in the eternal harged blak hole [13, 15, 14℄. With operators (63) and (65) we obtain

the important relation:

K

ms

�

0

;�

0

(D

0

)U (0; T ) = e

iT Æ

M

(l;n)2I

E

�

ln

K

ms

1;�

0

(D

V

l;�

;0

)U

V

l;�

(0; T )R

�

ln

; Æ :=

qQ

r

0

;

Hene, using the spherial invariane, we redue our study to a one dimensional problem i.e. the

study of K

ms

1;�

0

(D

V

l;�

;0

)U

V

l;�

(0; T ) as T ! +1. Now, we forget subsripts ln and � to simplify

the notations. As in [14℄, we split our investigation in two part thanks to the following ut o�

funtion J 2 C

1

(R

r

�

) satisfying

9 a; b 2 R; 0 < a < b < 1 J (r

�

) =

�

1 r

�

< a

0 r

�

> b

: (83)

Heneforth, we have

K

ms

1;�

0

(D

V;0

)U

V

(0; T ) = K

ms

1;�

0

(D

V;0

)JU

V

(0; T ) +K

ms

1;�

0

(D

V;0

)(1 � J )U

V

(0; T ); (84)

where the two last term are asymptotially orthogonal as T ! +1. Far from the star and

thanks to the hyperboliity, we have:

K

ms

1;�

0

(D

V;0

)(1� J )U

V

(0; T ) = K

ms

1;�

0

(D

V;0

)(1 � J )U

V;R

(�T );

where U

V;R

is de�ned by proposition 4.2. Sine this last propagator is straight linked with U(t)

by formula (78), the sattering theory in the eternal harged blak hole is very useful to onlude.

Near the star, we prove that

K

ms

1;�

0

(D

V;0

)JU

V

(0; T )f � 1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f; T ! +1; f 2 L

2

R

: (85)

This relation requires some tehnial lemmas, mainly of ompatness. Thus, the weak onver-

gene of JU

V

(0; T ) as T ! +1 is an important property to obtain the result. To onlude the

proof, we use a result from a previous work [14℄:

1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f �< K

ms

1;�

(D

0;R

)W

�

0;R

f;W

�

0;R

f >

L

2

R

; T ! +1; f 2 L

2

R

; (86)

seeing that the wave operator W

�

0;R

is linked with W

�

 

by formula (82).

We introdue some notations :

D

V;0

:= D

V;[z(0);+1[

; L

2

0

:= L

2

([z(0);+1[

r

�

; dr

�

)

4

: (87)

For g := (g

1

; g

2

; g

3

; g

4

) 2 L

2

R

,

g

T

(:) := g(: � T ); T � 0

and

G(r

�

) :=

1

p

��

0

r

�

t

(�g

3

; 0; 0; g

2

)

�

�

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1

2

�

; r

�

< 0;

with C

�

0

> 0. To obtain relation (85), we set and proof some lemmas. For this, we use the

notations introdue by formulas (66) (67), (75) (76) and propositions 4.1 and 4.2.
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Lemma 4.2

Given

t

(0; g

2

; g

3

; 0) 2 C

1

0

(R)

4

, then for � � 0 :

lim

T!+1

< (K

ms

�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

= 0; (88)

lim

T!+1

< K

ms

�

0

;�

0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

= 0; (89)

Proof:

We remark that

�

�

F

��

G

T

�

L

�

(�)

�

�

2

= 4�

0

B(T )j�(B(T )�)j

2

; (90)

�(B(T )�) :=

Z

R

e

��

0

y

e

i�B(T )e

�2�

0

y

g(y)dy; B(T ) := C

�

0

e

�2�

0

T+�

0

: (91)

Moreover, sine G

T

2

� G

T

3

� 0, we have for C

1

> 0





�

K

ms

�

0

;�

0

(D

0;R

)� 1

�

1

[0;+1[

(D

0;R

)[G

T

℄

L





2

= C

1

Z

+1

0

�

�

�

K

ms

�

0

;�

0

(�)� 1

�

F

��

G

T

�

L

�

(�)

�

�

2

d�;

= C

1

Z

+1

0

�

�

�

�

K

ms

�

0

;�

0

�

�

B(T )

�

� 1

�

�

�

�

2

j�(�)j

2

d�:

Sine � � 0 and k[G

T

℄

L

k � kgk, then K

ms

�

0

;�

0

�

�

B(T )

�

� 1 ! 0 as T ! +1. By the Cauhy-

Shwartz inequality and the Lebesgue theorem, we obtain the limit (88). For the limit (89), we

have





K

ms

�

0

;�

0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L





2

= C

2

Z

0

�1

�

�

K

ms

�

0

;�

0

(�)F

��

G

T

�

L

�

(�)

�

�

2

d�; C

2

> 0;

= C

2

Z

0

�1

�

�

�

�

K

ms

�

0

;�

0

�

�

B(T )

�

�

�

�

�

2

j�(�)j

2

d�:

Sine � � 0 then K

ms

�

0

;�

0

�

�

B(T )

�

! 0 and we onlude as above.

Lemma 4.3

For & < 0 (� = 0), we have for z 2 C n R







(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1







�

C

j=zj

2

; C > 0: (92)

Proof:

For f = (f

1

; f

2

; f

3

; f

4

) 2 L

2

R

and =z > 0 we have

�

(D

0;R

� z)

�1

f

�

(r

�

) = u(r

�

); r

�

2 R (93)

with

j = 1; 4 ) u

j

(r

�

) = �i

Z

+1

r

�

e

�iz(r

�

�y)

f

j

(y)dy; (94)

j = 2; 3 ) u

j

(r

�

) = �i

Z

r

�

�1

e

iz(r

�

�y)

f

j

(y)dy: (95)
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In the same time, we have also :

�

(D

0;[z(0);+1[

� z)

�1

f

�

(r

�

) = u

+

(r

�

); r

�

2 [z(0);+1[ (96)

with

u

+

1

(r

�

) = �i

Z

+1

r

�

e

�iz(r

�

�y)

f

1

(y)dy; u

+

4

(r

�

) = �i

Z

r

�

�1

e

�iz(r

�

�y)

f

4

(y)dy;

u

+

2

(r

�

) = �i

Z

r

�

z(0)

e

iz(r

�

�y)

f

2

(y)dy � ie

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

4

(y)dy;

u

+

3

(r

�

) = �i

Z

r

�

z(0)

e

iz(r

�

�y)

f

3

(y)dy + ie

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

1

(y)dy:

and

�

(D

0;℄�1;z(0)℄

� z)

�1

f

�

(r

�

) = u

�

(r

�

); r

�

2℄�1; z(0)℄ (97)

with

u

�

2

(r

�

) = �i

Z

r

�

�1

e

iz(r

�

�y)

f

2

(y)dy; u

+

3

(r

�

) = �i

Z

r

�

�1

e

iz(r

�

�y)

f

3

(y)dy;

u

�

1

(r

�

) = �i

Z

z(0)

r

�

e

�iz(r

�

�y)

f

1

(y)dy � ie

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

3

(y)dy;

u

�

4

(r

�

) = �i

Z

z(0)

r

�

e

�iz(r

�

�y)

f

4

(y)dy + ie

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

2

(y)dy:

Hene for =z > 0 and r

�

2 R, we obtain that

�

(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

f � (D

0;R

� z)

�1

f

�

(r

�

) =

�

u

�

+ u

+

�

(r

�

)� u(r

�

); (98)

where

�

u

�

+ u

+

�

(r

�

)� u(r

�

) =

0

B

B

B

B

B

B

B

B

B

B

B

�

�i1

℄�1;z(0)℄

(r

�

)e

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

3

(y)dy

�i1

[z(0);+1[

(r

�

)e

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

4

(y)dy

i1

[z(0);+1[

(r

�

)e

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

1

(y)dy

i1

℄�1;z(0)℄

(r

�

)e

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

2

(y)dy

1

C

C

C

C

C

C

C

C

C

C

C

A

: (99)

Moreover sine =z > 0, by the Cauhy-Shwartz inequality we dedue that

j = 1; 4)

�

�

�

�

�

Z

z(0)

�1

e

�izy

f

j

(y)dy

�

�

�

�

�

�

C

j

=z

kf

j

k; j = 2; 3)

�

�

�

�

�

Z

+1

z(0)

e

izy

f

j

(y)dy

�

�

�

�

�

�

C

j

=z

kf

j

k; (100)
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with C

j

> 0. Therefore, with (98) and (99) we obtain that for =z > 0







(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

� (D

0;R

� z)

�1







�

C

5

(=z)

2

; C

5

> 0: (101)

Obviously, we an prove the same estimate for =z < 0 in the same way. We remark that for

=z 6= 0







(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

� (D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1







(102)

=







(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

&A

�

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1







�

C

6

(=z)

2

;

with C

6

> 0 and





(D

&A

�

;R

� z)

�1

� (D

0;R

� z)

�1





=





(D

&A

�

;R

� z)

�1

&A

�

(D

0;R

� z)

�1





�

C

7

(=z)

2

; C

7

> 0;

(103)

sine &A

�

is bounded and k(D�z)

�1

k � Cj=zj

�1

; C > 0 with D self-adjoint on L

2

R

. Therefore,

we obtain the result by using (101), (102), (103) and the following equality :

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1

= (D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

+ (D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

� (D

0;R

� z)

�1

+ (D

0;R

� z)

�1

� (D

&A

�

;R

� z)

�1

:

Lemma 4.4

For & < 0 (� = 0) and � 6= (2k + 1)�; k 2 R, the following operators are ompat in L

2

0

:

1

[0;+1[

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)� 1

[0;+1[

(D

&A

�

;R

) (104)

1

℄�1;0℄

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)� 1

℄�1;0℄

(D

&A

�

;R

) (105)

K

ms

1;�

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)�K

ms

1;�

(D

&A

�

;R

) (106)

Proof:

To prove the result, we use the Hel�er-Sj�ostrand formula : given f 2 C

1

(R) suh that

�

�

�

�

k

s

f(s)

�

�

�

� C

k

< s >

�k

; k � 0; < s >:=

p

1 + s

2

; (107)

then there exists

e

f 2 C

1

(C ) with

e

f

j

R

= f and

�

�

�

�

�z

e

f(z)

�

�

�

� C

N

< <z >

�N�1

j=zj

N

; C

N

> 0; (108)

supp

e

f � fz; j=zj � C < <z >g (109)
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suh that

f(x) =

i

2�

Z

C

�

�z

e

f(z)(x � z)

�1

dz ^ d�z: (110)

Following [2℄, we an prove for & < 0 (� = 0) and � 6= (2k + 1)�; k 2 R, that







D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

f







� &� kfk ; f 2 D(D

&A

�

;℄�1;z(0)℄

)�D(D

&A

�

;[z(0);+1[

):

Therefore, if we hoose � 2 C

1

(R) suh that

&� � t =) �(t) = 1; 0 � t =) �(t) = 0;

we obtain that

1

[0;+1[

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

) = �(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

);

1

[0;+1[

(D

&A

�

;R

) = �(D

&A

�

;R

):

The funtion � satis�es property (107). By using formula (110) with the spetral theorem, we

have:

�(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)� �(D

&A

�

;R

)

=

i

2�

Z

C

�

�z

e�(z)

h

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1

i

dz ^ d�z: (111)

Aording to the estimate (108) with N = 2, to prove the ompatness of (104) it suÆes to

hek that:







(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1







� Cj=zj

�2

; z 2� C n R;

to obtain the norm operator onvergene of (111), and the ompaity in L

2

R

of

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1

; z 2 C n R:

The �rst property is obvious by lemma 4.3 et the seond is satis�ed sine the previous operator

is of �nite rank. The result for (105) and (106) is obtained in the same way, sine for the last

operators the funtion K

ms

1;�

2 C

1

(R) satis�es property (107).

We de�ne V

1

thanks to V suh that

V

1

:= ÆI

R

4 + &A

�

= lim

r

�

!+1

V (r

�

); Æ =

qQ

r

0

; & = �m

p

F (r

+

); (112)

where A

�

as in (68).

Lemma 4.5

Given

t

(0; g

2

; g

3

; 0) 2 C

1

0

(R)

4

and � � 0. Then

lim

T!+1

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)[G

T

℄

L

; [G

T

℄

L

>

L

2

0

= lim

T!+1

< (K

ms

�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

; (113)

lim

T!+1

< K

ms

1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< K
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�

0

;�

0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

; (114)
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Proof:

If & = 0 (� > 0), then we have learly

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)[G

T

℄

L

; [G

T

℄

L

>

L

2

0

=< (K
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�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L
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T

℄

L

>

L

2

R

(115)

and

< K

ms

1;�

0

(D

V

1

;0
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℄�1;Æ℄

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

=< K
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�

0
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0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

: (116)

Now, we treat the ase of & < 0 (� = 0) for the �rst limit. The proof for the seond is obtained

by the same way. By supposing that supp(g) � [0; R℄, R > 0 �xed, and T > �

1

2�

0

ln(�z(0)) +

1

2�

0

ln(C

�

0

) +

1

2

, we have supp

�

G

T

�

�℄z(0); 0[. Hene

1

[0;+1[

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

�

G

T

�

L

= 0� 1

[0;+1[

�

D

&A

�

;[z(0);+1[

�

�

G

T

�

L

; (117)

with

1

[Æ;+1[

�

D

V

1

;0

�

= 1

[0;+1[

�

D

&A

�

;0

�

= 1

[0;+1[

�

D

&A

�

;[z(0);+1[

�

(118)

and

K

ms

1;�

0

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

�

G

T

�

L

= 0�K

ms

1;�

0

�

D

&A

�

;[z(0);+1[

�

�

G

T

�

L

; (119)

with

K

ms

1;�

0

�

D

V

1

;0

�

= K

ms

�

0

;�

0

�

D

&A

�

;0

�

= K

ms

�

0

;�

0

�

D

&A

�

;[z(0);+1[

�

: (120)

From lemma 4.4, the following operator is ompat in L

2

R

:

K

ms

�

0

;�

0

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

1

[0;+1[

�

D
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�
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�D
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�
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�

�K
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�

0
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0

�

D

&A

�

;R

�

1

[0;+1[

�

D

&A

�

;R

�

By lemma VI.6 in [2℄: [G

T

℄

L

* 0, T ! +1 in L

2

R

. Hene, we have the following limits:







0�K
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�

0

;�

0

�

D

&A

�

;[z(0);+1[

�

1

[0;+1[

�

D

&A

�
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�

�

G

T

�

L

(121)
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0
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0

�

D
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�
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�

1
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�

D
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�

;R
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G

T

�

L





! 0; T ! +1:

and

lim

T!+1

< (K
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1;�

0
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V

1
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V

1
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T

℄

L
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T

℄
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>

L

2

0
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0
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�
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T

℄

L
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T

℄

L

>

L

2

R

: (122)
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First, we remark that using the Fourier transform F :

F1

[0;+1[

�

D

&A

�

;R

�

=

"

1

2

+

1

2

p

�

2

+ &

2

�

i��

1

+ &A

�

�

#

F :

Moreover





K
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�

0

;�

0

(D

&A

�

;R
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[0;+1[

(D
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�

;R
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T

℄

L

�K
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�

0
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0

(D

0;R
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0;R
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T

℄
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(123)

� C

1

Z

R

�

�

�

�

�

i�

j�j

�

1

�

1

p

�

2
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2

�

i��

1
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�

�

�

�

�

�

�

2

�

�

F
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G

T

�

L

�
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�

�

2
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1
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2

Z
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0

�

�

K
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�

0

;�

0
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1
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�
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�
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0
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1
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�

�

2

�

�

F
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G
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�

L

�

(�)

�

�

2
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2
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= C

1

Z

R

�

�

�

�

�
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j�j

�

1

�

1

p

�

2

+B

2

(T )&

2

�

i��

1

+B(T )&A

�

�

�

�

�

�

�

2

j�(�)j

2

d�;
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2

Z
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0

�

�

�

�

K
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�

0
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0

�

i

�

B(T )

�

1

+ &A

�

�

�K
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�

0

;�

0

�

i

�

B(T )

�

1

�

�

�

�

�

2

j�(�)j

2

d�;

= I

1

+ I

2

(124)

By a tedious but straightforward alulations, we obtain that

K

ms

�

0

;�

0

�

i

�

B(T )

�

1

+ &A

�

�

�K

ms

�

0

;�

0

�

i

�

B(T )

�

1

�

�! 0; T �! +1; � � 0: (125)

Then, thanks to Lebesgue's theorem lim

T!+1

I

1

= lim

T!+1

I

2

= 0. We dedue that

lim

T!+1

< (K

ms

�

0

;�

0

(D

&A

�

;R

)� 1)1

[0;+1[

(D

&A

�

;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

= lim

T!+1

< (K

ms

�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

: (126)

whih entails the result.

Lemma 4.6

Given f 2 C

1

0

(R)

4

and

g(t) :=

�

W

�

0;R

f

�

(1� 2t); (127)

then







JU

V

(0; T )f � [G

T=2

℄

L







0

! 0; T ! +1; (128)

and

JU

V

(0; T )f * 0; T ! +1 in L

2

0

: (129)

Proof:

This result is a onsequene of lemmas 6.5, 6.7 and 6.9 of [14℄

With this previous lemma and sine all operators are uniformly bounded in L

2

0

norm and C

1

0

(R)

4

is dense in L

2

R

, we obtain easily:
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Lemma 4.7

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< (K
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1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)[G

T=2

℄

L

; [G

T=2

℄

L

>

L

2

0

; (130)

lim

T!+1

< K

ms

1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< K
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1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)[G

T=2

℄

L

; [G

T=2

℄

L

>

L

2

0

; (131)

Lemma 4.8

The following operators are ompat in L

2

0

:

1

[Æ;+1[

(D

V;0

)� 1

[Æ;+1[

(D

V

1

;0

) (132)

1

℄�1;Æ℄

(D

V;0

)� 1

℄�1;Æ℄

(D

V

1

;0

) (133)

K

ms

1;�

(D

V;0

)�K

ms

1;�

(D

V

1

;0

) (134)

Proof:

From lemma III-10 in [2℄, we have the result for (132) and (133). For the last operator and as

for the proof of lemma 4.4, we use the Hel�er-Sj�ostrand formula. We must hek that:

�

�

(D

V;0

� z)

�1

� (D

V

1

;0

� z)

�1

�

�

� Cj=zj

�2

; z 2 C n R (135)

and

(D

V;0

� z)

�1

� (D

V

1

;0

� z)

�1

ompat in L

2

0

for z 2 C n R:

For the seond property, we remark that

(D

V;0

� z)

�1

� (D

V

1

;0

� z)

�1

= (D

V;0

� z)

�1

(V

1

� V ) (D

V

1

;0

� z)

�1

for z 2 C n R: (136)

Moreover, lim

r

�

!+1

(V

1

(r

�

)� V (r

�

)) = 0 and (V

1

� V ) 2 C

0

(R). By the Sobolev embedding,

we obtain that 1

[z(0);n℄

(V

1

� V ) (D

V

1

;0

� z)

�1

is ompat in L

2

0

for all n 2 N and z 2 C nR . As

we have learly





1

[z(0);n℄
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1

� V ) (D

V

1

;0

� z)
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� (V

1

� V ) (D

V

1
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0

! 0; n! +1;

we onlude that (136) is ompat in L

2

0

. Finally, sine (V

1

� V ) 2 L

1

(R) and k(D � z)

�1

k �

Cj=zj

�1

; C > 0 with D self-adjoint on L

2

0

, by (136), estimate (135) is satis�ed.

Lemma 4.9

Given f 2 L

2

R

, then for � � 0 :

lim
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(137)
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V

(0; T )f >

L

2

0

= lim

T!+1
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1;�

0

(D

V

1

;0

)1
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(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= 0: (138)
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Proof:

For K = K

ms

1;�

0

� 1 and 1

�

= 1

[Æ;+1[

or K = K

ms

1;�

0

and 1

�

= 1

℄�1;Æ℄

, we have:

K(D

V;0

)1

�

(D

V;0

) =K(D

V;0

)

�

1

�

(D

V;0

)� 1

�

(D

V

1

;0

)

�
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�

K(D

V;0

)�K(D

V

1

;0

)

�

1

�

(D

V

1

;0

)

+K(D

V

1

;0

)1

�

(D

V

1

;0

):

We obtain the equality of the limits, by using the previous formula, lemma 4.8 and the property

(129). Finally, we onlude the proof of this lemma thanks to lemmas 4.7, 4.5 and 4.2.

Lemma 4.10

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1





1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f





2

0

=< W

�

0;R

f; e

2�

�

0

D
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�

1 + e

2�

�

0

D

0;R

�

�1

W

�

0;R

f >

L

2

R

; (139)

with

Æ =

qQ

r

0

:

Proof:

See lemma 6.10 in [14℄.

Proposition 4.3

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1

< K

ms

1;�

0

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >
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(D
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)W
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0;R
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0;R

f >

L

2

R

; (140)

with

� =

2�

�

0

:

Proof:

By a straightforward alulation, we have
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(0; T )f >

L

2

0

The �rst and the third term are treated by lemma 4.9 and the seond term by lemma 4.10.

Proposition 4.4

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1

< K
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; (141)
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with

� =

2�

�

0

:

Proof:

With a simple alulation, we obtain that
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2
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:

The last term vanishes as T ! +1 thanks to limit (129) and lemma 4.1. By lemmas 4.10 and

4.1, we onlude that the two �rst terms are zero as T ! +1.

Proof of theorem 4.1 :

By lemma 4.1, the wave operatorW

�

V

l;�

;[z(0);+1[

exists and is an isometry from L

2

R

onto P

a

(D

V;[z(0);+1[

)L

2

0

.

Hene by using the operators (65), (63), we dedue that

W
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M

(l;n)2I

E

�

ln

W

�

V
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R

�

ln

; � � 0 (142)

exists and is an isometry from L

2

BH

onto P

a

(D

0

)L

2

0

. By de�nition, we have




�

�;!
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�

W

�

�;!

�

�

; � � 0:

Aording to the hain rule theorem, the following wave operator

W
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�;D

:= 


�
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�

W

�
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�

�

: P

a

(D

0
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! L
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�;!

; � � 0: (143)

is an isometry from P

a

(D

0

)L

2

0

onto L

2

�;!

. With the help of Lebesgue theorem, proposition 4.4,

the properties of the operators (65), (63) and the properties (62), (66) and (74), we obtain the

following limit:
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From the de�nition ofW

�

�;D

andW

�

+

, and the intertwining properties, we dedue that for � � 0
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We de�ne
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and remark that
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Hene, with (62) and (82), we have
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:

Therefore, we obtain limit (55).

4.3 Proof of theorem 3.1

By the identity of polarization, it is suÆient to evaluate for � 2 C
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oll

)

4

the following limit:
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Sine for T > 0 large enough, we have:
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Therefore, thanks to limit (144) of theorem 4.1, we dedue that for � � 0 :
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