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Abstract. - We prove the Hawking effect for a gravitational collapse of charged star, stationary
in the past and collapsing to a black hole in the future. In the past, the ground state of the
Dirac fields is given by a KMS state with unspecified temperature.

1 Introduction.

This article extends our previous investigation [14] about the Hawking effect [11] for the Dirac
field. In [14] we considered a charged star stationnary in the past, and collapsing to a black
hole in the framework of the semiclassical approximation where the back-reaction of the field on
the metric is neglected. Furthermore, the ground state in the past was given by the Boulware
vacuum. In this new work and always for the semiclassical regime, we study the same collapsing
star, but in the past, we consider a ground state given by a KMS state with unspecified tem-
perature. In the case of collapse in expending universe the temperature physically relevant is
that of Gibbons-Hawking associated to the cosmological horizon [10]. As in [14], we prove the
emergence of thermal state coming from the future black hole which is independent of the story
of the collapse and the nature of the star surface. Moreover, with the results of this paper and
the previous, we also remark that the choice of the ground state in the past does not modify
the caracteristic of the flux of particles coming from the horizon of the future black hole.

During the collapse the star becomes a black hole. This black hole is described in term the
Schwarzschild coordinates (¢, 7, w) as the globally hyperbolic manifold (M, g), (see for example
[12], [16], [20])

M = Ry x|ro, 74 [ x 5%, 0<rg<ry <+oo,
gudztds” = F(r)dt* — F~Y(r)dr? — r?dw?, (1)
dw? = db* + sin*0dy?, w= (0, p) € [0,7] x [0,2n],
2M  Q*  Ar?
Firy=1-"2 4% 2
=12, &

where Q € R, M > 0 and A > 0 are respectively the electric charge, the mass, the cosmological
constant. Here r¢ and r; are the radius of the horizon of the black-hole and the radius of the
cosmological horizon and moreover

F(rg) =F(ry) =0, 2kg= F (ro) >0, 2Ky = F (ry) <0, 7 €lrg,ry[= F(r) > 0, (2)



with kg, kKt the surface gravity at the black hole horizon and at the cosmological horizon. If
the cosmological constant A = 0, then (M,,,g) describes the asymptotically flat space time of
Reissner-Nordstrgm with
2M 2
F(T):1—7+%a 0<|Q <M,

ro=M+\/M?—-Q2, ry=-+o0.

We introduce the Regge-Wheeler coordinate such that

dr(r)

dr P )

With this new radial coordinate, the horizons are pushed away at infinities:

r«(r) > —00 <= r—ry, A>0
re(r) > +00 < r—ry, A>0, r.(r) > 400 <<= r—+oo, A=0.

Hence, we define the space time outside the collapsing star with mass M > 0 and r,-radius
z(t), t € R in an expanding or asymptotically flat universe, such that :

Mo = {(t,r*,w) ER xR, x 82, r,> z(t)} (4)

The reasonable assumptions of generic collapsing examined in [1] leads to the following properties
for z(t):
z€C*R); VEER, —1<2(t) <0, t<0= 2(t) =2(0) <O0. (5)
2(t) = =t = Cge > + @ (), Cro >0, [w(t)] +|w(t)] = O (e ), t = +o0.  (6)

According to the Birkhoff theorem and since the spherical symmetry of the star is maintained
during the collapse, the metric on M, is just the Lorentzian metric g defined in (1).

On (M. ., g) we consider the Dirac equation for a fermion of mass m > 0 and charge q € R:
e . Q _
itV 4 zq?\lf —m¥ =0. (7)

The term % is the electromagnetic potential since we take electromagnetic interactions between
the field and the charged star into account. Here y* are the Dirac matrices in curved space time
and @H the spinor fields covariant derivative. Our model of the star is very simple and very
convenient since our star is in fact a mirror. This assumptions enable us to avoid to treat the
different interaction and behavior of the fluid inside the star during the collapse. Therefore, on
the star surface,

S = {(t,r*,w) ERy xR, x 82, r,= z(t)},

we put the following conservative boundary condition, written for (¢,7,,w) € S, as

; . G0 .
niy U (t,re,w) =i Ut re,w), 7= =iyt (8)



where n; is the outgoing normal of subset of R; x R,., x 52 and v the chiral angle. We suppose
for the technical reasons that v € R if r; < +o00, and v # (2k + 1)m, k € Z if ry = 400. This
conservative boundary condition is the generalized MIT bag boundary condition [5] causes a
reflexion of the fields on the star surface.

In the second part of this work, we state the theorem giving a solution of the mixed hyperbolic
problem (7)-(8) with the help of a propagator. In this same part, we also introduce the useful
wave operators outside the future black-hole. In the fifth part, we state and interpret the main
theorem of this work using the Quantum Field Theory. To do this, we construct the local algebra
of observable 4(M..;) as in [6] and use the wave operators of the second part. Finally in the
last section, we expose the mathematical proof of the main theorem of this article.

2 Classical fields.

2.1 Dirac equation.

By using the definition (1) and a calculation from [2] and [17] for equation (7), we set in a
hamiltonian form the mixte hyperbolic mixed problem on (M., g) related to (7) and (8) :

8t\1/ = iDt\If, Z(t) < Ty, (9)
7 — o iy

T u(tx(e) = i W 2(0) (10)
U(t=s,.)="() € Lgv (11)

where L? is the energy space such that

(L2 := L2(2(t), +oolr. xS, 12 FV2(r)dr.dw)?, ||| ) (12)
and
9Q | 1 F(r) F(r) r 1 r 4
D,=—-24T —L ) VE(r) = = r 1
1=t <8r*+ g | VEE) (0 + oot ) + i d, + 17 ), (13)
' :=iy%! =iDiag(—1,1,1,-1), I?:=i7%?% I?:=iy%3, It:=-—my°, (14)
with
D(D;) =4 ¥ € L, D,V € L}; Mxlf(z(t) w) = —ie" U (z(t),w) (15)
t) — t t t m ) - ) .

Here the Dirac matrices 7", satisfy

7a7b+7b7a :277abIR4a a,b=0,.,3, ﬂab = Diag(1,-1,-1,-1). (16)

{ 0 o° {0 oF
7022( % 0 >7 ’Yk:Z(O_k ) k=123, (17)

with the Pauli matrices,

o (10 L (10 , (01 s (0 -1
U—(()l),a—(o _1>,0'—<10>,0'—Z<1 0). (18)

Q
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We introduce the following notation

O(ry,w) 71 €]2(t), +00[r.

Vo ezt ol = Ell. [oliw) = { g0 D

According to proposition I11.2 in [2], a unique solution ¥ (¢) of (9), (10) and (11) can be expressed
with the propagator U (¢, s):

Proposition 2.1
Given U, € D(D,), then there exists a unique solution [¥(.)]r = [U(.,s)¥,]r € C'(Ry, L%,) of
(9), (10) and (11) such that, for all t € R

U(t) € D(Ds), (D)l = [1s]ls-

Moreover, U(t,s) can be extended in an isometric strongly continuous propagator from L* onto
L?.

In the same way, we consider the hyperbolic problem related to (7) on (M, g):
0¥ = iDy, U (19)
U(t=0,)=Tuy () € Ly, (20)
where the differential operator Dy has the form (13) but defined on
(L2 = LA(Re, x 82,72 F 2 (r)drodw)’, |.]) (21)
In [13], we prove that the hamiltonian Dyy is self adjoint with dense domain
D(Dyy) = {¥ € Ly, DyuV € Ly} (22)
Hence by the spectral theorem, we have:

Proposition 2.2
The problem (19)-(20) has a unique solution ¥ € CO(Ry, L?,)) given by the strongly continuous
unitary group U (t) := *P5r;

V() =Ut)Vsy, V(0)=Ugy.

Moreover
@ = [1¥su |-

2.2 Scattering for Dirac fields by an eternal black-hole

Our result on the Hawking effect follows from a asymptotic analysis for the propagator U (0,T)
as T — 400. As the star becomes a black hole as T' — +o00, we strongly use that the dynamics
are simplier in vicinity of the two following asymptotic regions: r, — —oo (black hole horizon)
and r, — +o0o (cosmological horizon when A > 0 or the asymptotically flat space time when
A =0). This is the reason why we introduce the wave operators for the eternal charged black-
hole. The existence and the asymptotic completeness for these operators are already been the
subject of two previous works: [13] and [15]. To investigate the behavior of the Dirac fields near



the black hole horizon (resp. cosmological horizon A > 0 or asymptotically flat region A = 0),
we choose a cut function . € C®(R,,) (resp. x— € C®(R,,)) satisfying:

1 r.<a

da,beR, 0<a<b<1 X%(r*):{ 0 r.>b (resp. x— =1 —x). (23)
As regards the asymptotic behavior of the fields as r. — —oo (resp. 7. — +00 when A > 0), we

compare the solution of (19) on L2, with the solution of

V. =iD_¥._ (resp. ¥, =D, V) (24)
where
D_ :=T'9, — 9 <resp D,  :=T'9,. — ﬂ)
0 ’ T+

is self-adjoint on
Li = L2(R,, x 8%; dr.dw)®, (resp. Li_} = LZ, A > 0),
with the dense domain
D(D._)=H'R;L*(S7))"  (resp. D(D, ) = H'(Re.; L*(S2))*).

Since the matrix I'! is diagonal, we remark that equations (24) are the shift equations according
to the components. Hence, we define the subspaces of outgoing and incoming waves Li"‘ and
Lif such that Li = LEJ“ 53] Lif,

L :={V eL? Uy="V3=0}, L> :={¥elL? ¥ =7,=0} (25)
and
2 _ 72+ 2— 24+ . 12+ 2— . 12—
LA,—} - LA,~> ® LA,~>’ LA,~> T L<— ? LA,—} T L<— . (26)

Hence, we define the wave operators Wi at the black-hole horizon for A > 0 and WAiH at the
cosmological horizon when A > 0, by

WEvt = Jim U(—t)J Py in L, ¥FeL*™, A>0 (27)
W ot = Jim U(-t)7, ¢"Pro OF in L3, T eLXF, A>0. (28)

where J_ and J, _, are respectively the identifying operator between Li and LQBH and the one
between Lf_) and L2, :

T U5 (r,w) = xe (r)r TP ()0 (r,w), O e L2, A >0
VN \I/i(r*,w) — X%(r*)rlefl/‘l(r)\I/i(r*,w), Ut e Lfi, A>0.

The space-time is asymptotically flat at the infinity when A = 0. Therefore, we compare the
solutions of (9) on L2, with the solution W_, of the Dirac equation on Minkowski space-time
with spherical coordinates (p,w) € Rf x [0,7] X [0, 27[, putting r, = p > 0 to avoid artificial
long-range interactions :

V., =iD, U, (29)



where

1 2 1 s
1l 4
D, , =T <6p+;>+—p (80+§cot9) - 08¢+F,

psin
is self-adjoint on
LOQ, = L2( x 82 p*dpdw)*
with the dense domain
D(D,_, )= HI(R; x S2; pPdpdw)*.
Since the comparison of the solution of (9) on L2, with the solution of (29) on L02ﬁ involves

matrix-valued long-range perturbations, it is necessary to modify the free dynamic Do~ as

in ours previous works [13] and [15]. Given U, _, () the Dollard-modified propagator, then we
define for all ¥ € 1302ﬁ the wave operator Woﬂ; at infinity:

Wi U= lim U-HF,U,, (6 in L2, (30)

t—+oo

where J, _, is the bounded identifying operator between L02H and L2, :

Xos (1) r LY U (ry,w) 7 >0

L— 2
(T O) (s w) = { A 2o VVEL

Finally according to [13], [15] and [14], we state the theorem :

Theorem 2.1
The wave operators W Wi and Wi , respectively defined on in in and L2 exist
and are independent of the cut oﬁ" functwns Xes X— and X— satzsfymg (’79) Moreover

Ran (Wi ® Wj;) 2, (A>0)
and
VIE e L2, A0, m>0, [WETE| = Ut
VOTELYT, A>0, m>0, |[WE UF| =T
VoeL, A=0, m>0, [W}\, \If||—||\1f||L2 |

3 Quantum Fields

3.1 Construction of the Dirac Quantum Fields

To describe the Quantum effects of the collapse, we need to introduce the framework of the
Quantum Field Theory. For a general discussion on the Quantum Field Theory in curved
spacetime, we cite the following and non exhaustive list of books: [3], [8], [18], [21]. This theory
are usually defined on flat space-time. In Minkowski space-time, we have a natural choice for
the vacuum state: the vacuum related to the inertial observators. In this case, it is sufficient to
construct a field operator which satisfies a given field equation on a Hilbert space corresponding



to an inertial observator (we choose a particular Cauchy hypersurface of the space-time). Indeed,
thanks to the Lorentz transformation, this construction is equivalent for all inertial observators.
But in our case, we deal with a curved space-time and in general manifolds, hence we have not
the equivalent Lorentz transformations and any preferential choice for the vacuum. Then, we
adopt the point of view introduced by J. Dimock in [6] and [7]. In [7] and for the spin 1/2 fields,
the author suggests a construction for local observables to globally hyperbolic manifolds which
is independent (up to a net isomorphism) of the representation of the CAR, the choice of the
spin structure and the Cauchy hypersurface.

Before to explain this construction, we define on a complex Hilbert space (9, < .,. >g) the
Fermi-Dirac Fock space describing the state with an arbitrary number of non interacting charged
fermions. Given a Dirac-type equation satisfied by the field f with Hamiltonian H defined on
9:

o, f = iHf. (31)
We choose the spectral projectors P, and P_ such that
Pp=1) ), P =1 (H). (32)

Then, we introduce the Fermi-Dirac-Fock space for (9, < .,. >g):

F(9) = éoao Foom, g (6) = 5" (91) @ F ™ (%), (33)
0
where
§99):=C, §99 )=C FM(H) = /n\m, Fm(e ) = 7\ TH (34)
k=1 k=1
and
H=9H,09, H:=PH H =P9H (35)

Here, T is the charge conjugation (see [19] section 1.4.6). On §($)), we introduce a(P; f)
and a*(Py f) the particle annihilation and creation operators and also b(P_f), b*(P—f) the
anti-particle annihilation, creation operators. We can find the their rigorous definition in the
appendix A in [2] or in the book [4]. Therefore, we define the anti-linear quantized Dirac field
operator ¥ and its linear adjoint ¥*:

fen—Y(f):=a(Pf)+ (TP f) € L(F(H)), (36)

and

feHr—= U (f):=a"(Prf)+b(TP f) € L(F(H)).

Moreover, these operators are bounded

OI =1L e OI =171 fFesn



and thanks to the classical properties of the creations and annihilation operators, it satisfies the
canonical anti-commutation relations (CAR):

V(f)¥(g) +¥(9)¥(f) =0, T())T(g) + ¥ (9)¥*(f) =0, f,9€9
U (f)¥(9) + ¥ ()W (f) =< f,9>5 1

We consider the C*-algebra (%)) generated by the field operators ¥*(f)¥(g), with f,g € $ and
introduce the KMS state w®?_ such that for f,g € $:

KMS
W (¥ (9)) =< K5 (ED S g >o, (37)
with, for all z € R
ms — ox or\—1 . o0
Ko (@) = pe’ (14 pe”™)", p=e"", o>0, deR (38)

On the sub-algebra §($4) (resp. U(H_)) of U($), the state wfg&s provides a description of an
thermodynamical equilibrium state for a gas noninteracting Fermi particles (resp. anti-particles)
with temperature 1/0 > 0, chemical potential § (resp. —d) and activity p (resp. 1/u).

Now, according to the work of J. Dimock [7], we construct the algebra of local observables
on a given globally hyperbolic curved space-time M with a foliation by a family of Cauchy

hypersurfaces I1; :

M:UHt

teR

We consider a fixed hypersurfaces II; and put $§ = L(II;)*. Using the previous definition of
Dirac quantum field (36), we define on L(II;)* the quantized Dirac field ¥, and LU(L(I1;)?) the
C*-algebra generated by W*(®;)¥,(®y), with ®;,®5 € L(II;)*. Moreover we introduce the

following operator
St D€ CP(M)* —s Sad 1= / P(t, 5)®(s)ds € L(IL)%, (39)
R

where P(t,s) is the isometric propagator from L(II;)* onto L(II;)*, related to the Dirac field in
Mon- Then, we define the local quantum field in M by the operator:

Ty:PcCPM)— Ty (B) =T, (S4D), (40)

and, for any open set O C M, we introduce {(Q) the C*-algebra generated by W 4(P;)¥4(P2),
supp(®;) C O, j = 1,2. Finally, we have:

U(M) = adh (Uu(0)> :
@

Hence by J. Dimock [7], this construction is independent of the representation of the CAR, the
choice of the spin structure contained in P(¢,s) and the fixed Cauchy hypersurface IT; with
teR

Now, we apply this procedure to the space time outside the collapsing star M., but also to
the space times near the future black hole M,, and at the infinity (r, — +00) Mg, or My,



with the intention of interpreting the Hawking effect with the help of the wave operators (27),
(28) and (30).
For the stationary space time M., we have the following foliation :

Meon = | J I, 10 = {t}x]2(t), +00[,, xS2.
teR

We consider Ily, and we put
9 := L*(2(0), +00[x S, 2 F'/?(r)dr.dw)* = L2, H := D. (41)

Using the previous construction, we define on L3 the quantized Dirac field ¥5 = ¥, and 4($)
the C*-algebra generated by ¥ (®1)¥o(Py), with @, Py € §. According to (39), we introduce
Seon = Sa with P(0,t) = U(0,t) the propagator defined in proposition 2.1. Then, we define the
local quantum field in M., by the operator

\IICOII : @ € C(C;O(Mcoll)4 — \Ifcoll(é) = \IIO(Scollé) (42)

and also U(M..y) the closed union for all open set O C M., of U(QO) the C*-algebra generated
by ¥ (P1)¥.u(P2), supp(®;) C O, j = 1,2. Then, according to (37) and (41), we define on
U(Meon) a ground state w,, —as following:

choll (‘I’coll(¢1)\IICOH(®2)) f{?\;[USO (W0(80011¢1)\D0(80011¢2)) (43)
=< JCZ:’)SO_O (DO)Scoll(Pl’ Scoll®2 >f)a (Pla ¢2 S fj (44)

with
o = % sy eR, op>0. (45)

Indeed, we suppose that our star which is stationary in the past collapses in a bath of fermions
and anti-fermions with temperature o L'>o.

We describe the quantum field at the horizon of future back-hole. We consider the stationary
space-time My, with the following foliation

Mo = [T, T = {t} x R, x 82,

teR

By using the same procedure as above we construct . (M,,,) the closed union for all open set
O C M,, of 4(O) the C*-algebra generated by ¥_ (U1)¥" (V5), &1, P2 € L? where

T :decCPM,) —T_(D):=T (S_d), (46)
and
S_ =84, P(0,t):=e P, (47)

Here ¥_ (®) with ® € L?_ is the quantum Dirac field defined on the hypersurface R,, x S2. By
using (37), we consider the Hawking thermal state:

Wi (W (21)W_ () = Wl (U7 (S_ @)W (S_D3)), &1,y € CF°(My)* (48)
=< “K,Zfzsr( D_)S_®1,5_ P, >Liv (49)



with
pi=e GdeR, o>0. (50)

Finally we introduce the quantum fields at infinity when r, — +o00. According to A which is
respectively positive or zero (cosmological horizon or asymptotically flat space-time), we consider
the stationary space-times

My, =R xR, x S2, My, =R, x Rf x S2.

As above, using the Fermi-Dirac Fock quantization on R,., x S? or R x S2. we define the
fields ¥, . (@) with ®; € Lfﬁ or ¥,  (®1) with & € L7 . Hence, we construct L ,(Myy)
and {_,(Myg,,). The algebra i, (M,,) is the closed union for all open set O C M,, of the
C*-algebras 4l_,(O) generated by ¥i  (1)¥,  (¢1) with @1, &5 € Lfﬁ

U, 1 0eCPMy)' ' — T, (2):=T, (S, @), A>0 (51)
and
S, =54, P0,t):=e"Prs A>0. (52)

As to the algebra i, (Mg, ), it is the closed union for all O C My, of the C*-algebras {_,(O)
generated by ¥»  (®1)¥, | (®;) with @, Py € Li_),

U, 0 O (Ma)' o B, ()=, (5, @) ()
and
‘S:),a = SA, P(Oat) = Uo,a (_t)a (54)

where U, _, is the Dollard-modified propagator. With (37), the thermal states on each algebras
U (M) and U, (May,,) are given by

V1,3 € CF° (M), w&g,ao(\]:;:ﬁ (¢1)\I’A,—> (1)) =< K (DA,—> )SA,—> (I)l’SA,a @y >L§ ’

KMS Ho,00
with A > 0, and
Vo1, 05 € CF°(Mia),  w2(Tr, (91T, (21)) =< K2 (D, )5, ©1,5, ., @2 >p> .
? ’ ’ ’ 0,—

KMS 0,— 10,00

3.2 Hawking effect
The state
choll (‘I’* (¢1)\Ij‘3011(®2))7 (P,] € Cgo(Mcoll)47 .7 == 172’

coll

gives the informations about the quantum fluctuations in a region of M,,;,. But, we are interested
in the investigation of this previous state at last moment of gravitational collapse when the
detector is fixed with the respect to the variables (r,,w). As this collapsing star becomes a
black hole, the detector at the rest receives the informations from the creation of the black hole
when this proper time ¢ = co. Hence, we put

@jr(t,r*,w) =0t -T,ry,w), ;€ CP M), 7=1,2,

and state the main theorem about the behavior of w,, , at the last time of the collapse :

10



Theorem 3.1
Given ®; € Cgo(./\/lw”)4, j =1,2, then we have for A > 0,

lim w,, (¥, ( DY .u(®3)) = wHaw(‘I’* (Q_21)T_(Q2_92))
T—+o00 co
] * — _
+ wKOAng (\I’ (QA,—> ¢1)WA,4> (QA,—> @2)),

with

1 2

Touw = — = 22 5= 19

g K0 To

Let us interpret the previous theorem.We know that the state w,, . Yepresents the response

of a detector at the rest in Schwarzschild variables at time 7. ThlS detector is initially put in
the state that corresponds for a static observer to a fermionic gas, where the particles does not
interact between themselves and defined by the constants of temperature oy > 0 and chemical
potential .

As T = 400, the detector measures the fluctuation of the quantum fluctuations related to
Wit when the star becomes a black hole. In this situation, the detector measures two types
of informations: about the fields coming from the past infinity (and falling into the black hole)
and about the fields coming from the the future horizon of the black hole (going to the future
infinity).

Since the state w‘s‘}\;[‘go contains the wave operators €2 in its definition, w97 gives the
information about the fields of the first type. It means that the detector measure a quantum
fluctuation coming from the past infinity which is interpreted by a static observer as a flux of
particles with the same characteristics that the initial ground state.

In the same way, since wgfw contains the wave operators 2 in its definition, this state
gives the informations about the fields coming from the future black hole horizon. Indeed, the
detector measures the emergence of the thermal state with temperature

50,00

1 2
THaw = _ = _Tr
Ko

which is interpreted by a static observer as flux of particles and anti-particles with charge density

We remark that the result is independent of the story of the collapse, the boundary condition
(the characteristic of the star surface) and also the ground state since we proved the same result
in [14] by supposing that the ground state is Boulware type in the past. This is a no hair result.

Moreover, the previous theorem is valid when A > 0. When A > 0, we consider the DeSitter-
Reissner-Nordstrgm space time outside the star before and during the collapse. Let us recall that
this curved space time has a cosmological horizon at infinity. In this case, G. W. Gibbons and
S. W. Hawking have proved in [10] that an observer following any time like geodesics measures
an isotropic background of thermal radiation coming from the past cosmological horizon with

the (Gibbons-Hawking) temperature

27
Ton=—.
K+

11



Here k4 is the surface gravity at the cosmological horizon defined in (2). Hence, a static
observer interprets this radiation as flux of particles coming from the past cosmological horizon
with temperature Toy = 06}{ and chemical potential dgr. Hence, we define the ground state
outside the collapsing star. On (M._,;) and for all &, Py € L% we have

wMCOH
choll (\Ijjon(@l)‘l’coll(QQ)) = wf(ol\;[o-so (\IIE(SCOII(Pl)‘I’O(Scoll(DQ))
=< J<:/T(')S,O'o (DO)Scollq)la Scollq)Q >L(2),
=< W/:D JCZ’SS’UO (D0)80011¢17 W/;D Scoll¢2 >L§,_>’

=< Ky (Dy )8, W, @18, W, @ >

0,00

= WU (W, &), | (W B)),
where W~ is the wave operator linking the dynamic outside the star before the beginning of
the collapse and the free dynamic at the past cosmological horizon (see (80), (142) and (143) for
the definition). Hence, in the case of cosmological model with a positive cosmological constant,
the only physically relevant choice for the oy and §y is

K+

1
oo =o0gn =Tgy = o do = 0aH-

4 Proof of theorem 3.1.

This section is devoted to the proof of theorem 3.1. In other to demonstrate this previous
theorem section 4.3, we prove the following sharp result:

Theorem 4.1
Given f € L?,, if A >0, then

lim < IG5, (Do)U (0, T)f, U0, T)f >o=< Ky (Dy )R, [0 f >p2

T 5 00 10,00 10,00
+ <Ko (D) f, X f > (55)
with
o6 5. 99 _2m  o  t - (w- ) - —(w- )
p=e =10 o= Qo= (W), 0 = (wil)s e =(w.),

where W_, W | W are the wave operators respectively defined in (27), (28) and (30).

A= 0,—

To prove the limit (55), we use the spherical symmetry property of the geometrical framework.
Indeed, we introduce the spin-weighted harmonics to reduce our study to a family of one dimen-
sional problems. This is the purpose of the next section.

4.1 Reduction to a simplier problems thanks to the spherical symmetry.

Given Yi 1, the spin-weighted harmonics (see [9], [13]) such that the families
27

1
{vigamezh, {¥!, :amer}, I::{(l,n): -5 €N, l—|n|€N},
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form a Hilbert basis of L?(S2) and each Y

sn?

n—scosf_, _ —i\/(lj:s)(l:Fs—i—1)Ysl¥17n(w), £l > —s.

sin 0
0pY g (w) = —inYy, (w).
Afterwards, we introduce the following Hilbert spaces:
(L? = L*(Jz(t), +00l., dr.)*, I-le), 0<t
(L]%@ = LZ(R‘FM d’l“*)4, ““) ’
Ly = L* Ry, r*F'(r)dr)" = P, L,
with
P U r LAY

So, we express L? and L%, as a direct sum:

L;= @ e,17, Ly, = &Lk
(I,;n)ez (I,;n)eT
where,
& Wy, € L s e 5 Py, @4 Yy, € LY
with

4
v @4 u = (u1v1, UgV2, u3v3, UsVy), Vu,v € C,

Y, = (Yj%m,yéyn,yl%,n,ﬂ ) .

PR

Defining the following restriction operator Rj, such that
v e L 3Py, € L2, Uy, =< U,Y), >

and using (56), (57) for s = £1/2, we obtain the following decompositions:

D, = @ elUnDVl,u;tRlUn - qT_Qa
(Ln)eT 0
1 1 ]
Dy, =T, + Vi, Vip=4qQ (T— — ;) ~VF(r) (mAV + %FQ(l + 1/2)) ,
0
R 0 ay R T R 1 N V7] _ 1 _'é(t)
A, = < @ 0 ), a, = diag(ie",ie"), Z(t) = T i)

D(Dv;,4) = {¥ € L}; Dy, ¥ € L,
Z(t)W2(2(t) = Ya(z(t), V1(z(t) = —Z(5)¥s(2(2))} -
For ® € L?(B, dr,)*, B C R, we define a L?-extension such that

®(r,) r.€B
1900, e = 8lell. (0l i= { 70 S0

13

s = £1/2 satisfies the recurrence relations,

)

(63)

(64)

(65)



In the same way, we introduce
0<t, H :={®ecl} 0,.®cL}}, Hi:={dclIi 9.0cLi},
and a H'-extension such that for ® € H} we have,

D(ry) Ty €)2(t), +00[.

[®lu € H,  [2lu(rs) = { B(22(t) — 1) 14 € R\]2(t), +00),

*

For the dynamic Dy; , 1, we set proposition VI.2 in [2] which gives a unique solution expressed
with the propagator U, (t,s) of:

0® =iDy, 1@, teR, 1> 2(1), (70)
Dy(t, 2(t)) = Z()D2(t, 2(1), P1(2,2(2)) = —Z(1)P3(2, 2(2)), (71)
d(t=s,.)=d,() € L2 (72)

Proposition 4.1
If &, € D(Dvl ), then there exists a unique solution

[@()]m = [Uy,, (5)@slm € CH(Ry, LE) N CO(R;, HR)

of (70), (71) and (72) with
D(t) € D(D\/l,,,,t )
Moreover,

[@(E)lle = [1Ds]ls (73)

and UVz,., (t,s) can be extended in an isometric strongly continuous propagator from L? onto L?.

The operators (63) and (65) are very useful to express U (¢, s) defined in proposition (2.1) with
the help of U, (¢, s) :

Ut s) = 0% @ cnu,, (ts) =P e Li-ri= P et (1)
(I,n)eT (l;n)ez (I,n)eT

Given a potential V' € L*®(R,.) and an interval B := (a,+o00) or B := (—o0,a) and V €
L*(R,,), then, we define on L*(B)* the self-adjoint operator D, , with the dense domain

D(D,, ) such that
D,, =9, +V, (75)
D(D,,) ={® € L*(B)*; D,,® € L*(B)*, r. € 0B = iiy' ®(r,) = i®(ry)}, (76)

where T'! is given by (14) and 7 is the outgoing normal of B. Using Kato-Rellich and spectral
theorem, it is easy to find an unique solution of

8@ =iD, , ®, ®(0)= V. (77)

using the propagator U, , (t):

14



Proposition 4.2
Given ®9 € D(D,, , ), then there exists a unique solution

(I)() = UV,B (')(1)0 € CO(Rtvp(DV,B )) n Cl(Rt’Lz(B)4)

and
[@@)] = 1Poll-
Moreover, U, , (t) can be extended, by density and continuity, in strongly unitary group on

L?*(B)*.

Thus, we can express the propagator U (t) defined in proposition 2.2 with the help of U, , (%)
and the operators (63) and (65):

,thQ v
@ 8ln Vi R t In- (78)
(I;n)eT

Now, we introduce the useful wave operators for the next part. We choose a cut-off function
x € C*(R,,), such that

Ja,beR, —oc0<a<b<+o00 X(T*):{é ::iZ’ (79)
and the subspaces L%{“ and L%&* of LH% with the following properties :
LEr={® € Lg; ®,=03=0}, L% ={®€Lg; & =& =0}.
Hence, we state the lemma:
Lemma 4.1
Given V =V, , to simplify the notation. The wave operators
W =s— Jim U, (=t)xUpg (1), in L3
Wv,i[z oot =5 m T (SO =) (1) in L: (80)
exist and are independent of x satisfying (79). Moreover
Ran (WoiR) = L%, Ran (in[z o +Oo[) = Py, (DV,[Z(OHOO[) L2 (81)
where Py, (DV,[Z(O),HX)[) is the projector on the absolutely continuous subspace of D b [2(0) o0l *
Proof: See lemma 6.3 in [14]. |
By using the operators (63) and (65), we easily remark that
D enw, R (82)

(L,n)ez
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4.2 Proof of theorem 4.1

Firstly, we describe the main ideas of the demonstration. Our proof uses some results from
some previous works: the sharp study of the backward propagator U (0,T') [14], the scattering
theory in the eternal charged black hole [13, 15, 14]. With operators (63) and (65) we obtain
the important relation:

(0 T) In» 0:= ﬂ,

Ly 0

Koo (DO)U(0,T) = T (P 5,75, (D, o),
(I,m)eT

Hence, using the spherical invariance, we reduce our study to a one dimensional problem ¢.e. the
study of X1'7 (D, )le (0,T7) as T — +o00. Now, we forget subscripts In and v to simplify

the notations. As in [14], we split our investigation in two part thanks to the following cut off
function J € C*°(R,,) satisfying

1 re<a

Ja,beR 0<a<b<1 j(r*):{o s b

(83)

Henceforth, we have
100 (Dyo )U, (0,T) = X775, (Dy ) T Uy, (0,T) + KT (Dy ) (1 = TG (0, T), (84)

where the two last term are asymptotically orthogonal as 7" — +oo. Far from the star and
thanks to the hyperbolicity, we have:

oo (Do )1 = TN, (0,T) = K, (Dy o ) (1 = Ty (=T),

where U, , is defined by proposition 4.2. Since this last propagator is straight linked with U (t)
by formula (78), the scattering theory in the eternal charged black hole is very useful to conclude.
Near the star, we prove that

717?;0 (DV,O )jUV (OvT)f ~ 1[5,+00[(DV,0 )ij (OaT)fa T — 400, f[E€ LI%!K' (85)

This relation requires some technical lemmas, mainly of compactness. Thus, the weak conver-
gence of JU,, (0,T) as T — o0 is an important property to obtain the result. To conclude the
proof, we use a result from a previous work [14]:

15 100[ (Do )T Uy (0, T) f ~< K5 (Do Wy [y W f >p20 T — 400, feL, (86)

seeing that the wave operator W is linked with W_ by formula (82).

We introduce some notations :

D,, =D, L% = L*([2(0), 400l dr,)* (87)

V,0 [2(0),+00[ ?

For g := (91,92, 93,94) € LR’

and
Gr) L 1(Cg4,0,0,00) (== In(—r.) + —— In(Cl,) + & <0
) 1= — "(—g3,0,0, ———In(-7) +=—1n —], r.<0,
V—KoTs 93 92 2kK0 2kK0 R0 9

with Cy, > 0. To obtain relation (85), we set and proof some lemmas. For this, we use the
notations introduce by formulas (66) (67), (75) (76) and propositions 4.1 and 4.2.
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Lemma 4.2
Given (0, ga,93,0) € C°(R)*, then for A >0 :

Jim < (G, (D) = Do, oof( Dy )IE 1[G > 12 =0, (88)
Jim <5 (D)1 (D)6 ]2, 6T > 12 =0, (89)
Proof:
We remark that
7 ([6"],) (O = 4roB(D)O(B(T)E)P, (90)
O(B(T)E) = /R e o B g () dy | B(T) 1= Cge 2070, (91)

Moreover, since G4 = G4 = 0, we have for C; > 0

“+00

H (:KZE)S,I/O (DO,R) - 1) 1[0,+oo[(D0,R )[GT]LH2 = Cl ‘(JCZIOS,VO (5) - 1) F ([GT]L) (5) ‘2 df,
0

:CI/+OO gms () _q
0 H0,V0 B(T)

Since 7 > 0 and [|[GT].] < |lgll, then X2, (%) —1—0as T — +o0o. By the Cauchy-

Schwartz inequality and the Lebesgue theorem, we obtain the limit (88). For the limit (89), we
have

2
10(n)|? dn.

0
156, (Dy )10y (D )G T || = 02/ 5, (O F ([GT],) © de, €y >0,

0 2
n 2
o[ fitz () [ oo
> | Ko \ B 0(n)|” dn
Since 7 < 0 then K%, (%) — 0 and we conclude as above. ]
Lemma 4.3
For ¢ <0 (A =0), we have for z € C\ R
-1 -1 ¢
H(DCAIM]*OOJ(O)] ® DCAV,[Z(O)H’OO[ - Z) B (D§AV,R B Z) H S |%Z|2, C > 0 (92)
Proof:
For f = (f1, f2, f3, f1a) € L% and Sz > 0 we have
((Dye =2)7f) (r) =ulry), e €R (93)
with
too
=LA =l =i [ e p )y, (94)
Tx
Tx )
7=2,3 = uj(ry) = —i/ e”(r*_y)fj(y)dy. (95)
—00
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In the same time, we have also :

(D0 s =71 ) () =¥ (), 7 € [2(0), +0]

with
+oo T .
/ T fy)dy, e () = i / e =) £y (y)dy,
Z/ 2(rs— yf2 )dy_iezz(r*—z(O))/ ezzyf4(y)dy’
z(0)
+oo
Z/ 2(rs— yf3 )dy—i—ze 2(re— z(O))/ e”yfl(y)dy.
z(0)
and
((DO,]—oo,z(O)] - z)_lf) (re) =u™(rse), 7x E] — oo,z(O)]
with

Tx . T )
uy (re) = —i / e fo(y)dy,  ug (ry) = —i / e#(r7Y) fi () dy,
—00 —00
z(0) ) z(0)
’U,; (’l"*) — —’L/ 6fzz(r* 7y)f1 (y)dy - Z-efzz(r*fz(O)) / eizny:;(y)dy,

2(0) . 2(0)
ug (rs) = —i / e Y fu(y)dy + e 0D / e faly)dy.

—00

Hence for &z > 0 and r, € R, we obtain that

((D ) ® D, 0o — ) — (Dys — z)—lf) (r) = (u™ +u™) () — u(r,),

0,]—00,2(0)]

where

z(0)

—i1)_ ooy (s )2 O / e " f3(y)dy

—00

+o00o

_Z']_[Z(O),_i_oo[(r*)eiz(r*—z(O))/ eizyf4(y)dy
o
i11:(0), 4oo ()€ #(O) / o e f1(y)dy
2(0
) z(0)
“}oo,z<o>1(7“*)e”(”z(0))/ e fo(y)dy

— 00

(u +u®) (r) —u(ry) =

Moreover since $z > 0, by the Cauchy-Schwartz inequality we deduce that

. #(0) —i Cj : MRS
j=vas | [ e < gl =28 [ ey

18
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with C; > 0. Therefore, with (98) and (99) we obtain that for 3z > 0

Cs
($2)%

H(D Cs > 0. (101)

0,]—00,2(0)]

—1 -1
® Do,[z(o),+oo[ - Z) - (‘DO,R - Z) H <

Obviously, we can prove the same estimate for Sz < 0 in the same way. We remark that for
Sz #0

-1 -1
H(Do,]—oo,z(on 69Do,[z(O),+oo[ —2)7 - (DcAu,]—oo,z(O)] @DcAu,[z(O),+oo[ —2) H (102)
C
_ -1 1 6
- H(DOJ—oo,z(on D Dy oy toor =2 AV Dy, 1 socon B Dony o0y40el —2) H < (S2)2
with Cs > 0 and
Cr
-1 -1 -1 -1
H(DgA,,,R - z) - (DO,R - z) H = H(DgA,,,R - z) gAV(DO,R - Z) H < (%Z)Qa C? > 07

since ¢A, is bounded and ||(D —2)"!|| < C|Sz|7!, C > 0 with D self-adjoint on L. Therefore,
we obtain the result by using (101), (102), (103) and the following equality :

Dy yercion @ Lony ot =2~ Dogyp =2)7
_ -1 -1
- (DcAu,l—oo,z(O)l DD 4, ool T 27 - (Do,]—oo,z(on DDy .00l z)
-1 -1
+ (DO,]—oo,z(O)] ©® DO,[z(O),+oo[ —z)" - (DO,R —2)
+ (DO,R - z)_l - (DgA,,,R - z)_l'
|
Lemma 4.4
For ¢ <0 (A=0) and v # (2k + 1)mr, k € R, the following operators are compact in L:
1[0,+00[(DgA,,,]—oo,z(0)] ® DgA,,,[z(o),+oo[) - 1[0,+w[(DgAV,R) (104)
1]70070}(DcAy,]—oo,z(0)] ® DgA,,,[z(o),+oo[) - 1]*00,0}(DgA,,,R) (105)
?,L(‘]S'(‘DgA,,,]foo,z(O)] ©® DcA,,,[z(O),+oo[) - Tg(‘DgA,,,]R) (106)
Proof:
To prove the result, we use the Helffer-Sjostrand formula : given f € C*°(R) such that
) <Cpr<s>F k>0, <s>=1+s2 (107)
then there exists f € C°(C) with ﬂR = f and
0:f(2)| < Cn < Rz >"N1 132N, Oy >0, (108)
suppf C {z, |Sz| < C < Rz >} (109)
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such that
flo) = — / 051 (2)(z — z) \dz A dz. (110)
27 C
Following [2], we can prove for ¢ <0 (A =0) and v # (2k + 1)7, k € R, that

HDcAV,]—oo,z(O)] @ DcAu,[z(O),+oo[fH z £l fE€DWDu, yoceion) PO, o) oot
Therefore, if we choose x € C*°(R) such that
saw<t=x(t)=1, 0>t= x(t) =0,
we obtain that

® DcAu,[z(O),+oo[) = X(DcAu,]—OO,Z(O)] O D4, (0400l );

1[0,+oo[(DgA,,,R ) = X(DgA,,,R )

1[0,+oo[(D<Au,]—oo,z(0)]

The function x satisfies property (107). By using formula (110) with the spectral theorem, we
have:

X(DgAV,]foo,z(O)] ©® DgA,,,[z(O),+oo[) - X(‘DgA,,,]R)
1 ~ _ _ _
e /C O (Dt sy © Doty s~ D) = (D — 2 dzndz. (111)

According to the estimate (108) with N = 2, to prove the compactness of (104) it suffices to
check that:

®D

-1 -1 -2
st — 2 = (Do =27 €182 zec R,

H (D§Ay,]—oo,z(0)]
to obtain the norm operator convergence of (111), and the compacity in L]%@ of

-2t = (D —2)7, zeC\R

SAy,R

(D &D

sAp,]—00,2(0)] sAy,[2(0),+o0[

The first property is obvious by lemma 4.3 et the second is satisfied since the previous operator
is of finite rank. The result for (105) and (106) is obtained in the same way, since for the last
operators the function X5 € C*°(R) satisfies property (107). |

We define V, thanks to V such that

Voo 1= 5IR4 +c¢A, = lim V(T‘*), 0= @, c=—-m F(T-I-)? (112)
T« —>+400 o
where A, as in (68).

Lemma 4.5
Given '(0,g2,93,0) € C(R)* and A > 0. Then

lim < ( i (Dvoo,o) - 1)1[5,+oo[(Dvoo,0 )[GT]Lv [GT]L >L%

T—+o0 Lo

= TE)TOO < (KZ?,JO (DO,]R) - 1)1[0,+oo[(Do,R )[GT]La [GT]L >L]'12{a (113)
T1—i>r-|r—loo < fK?,l;o (Dvoo,o )1]—00,6} (Dvoo,o )ij 0,7)f, JU, 0, 7)f >L%

= TE)TOO < JCZIOS,JO (DO,R )1}700,0](D0,R )[GT]La [GT]L >L]12§’ (114)
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Proof:
If ¢ =0 (A > 0), then we have clearly

< ( 717?;0 (Dvoo,o) - 1)1[6,+oo[(Dvoo,0 )[GT]Lv [GT]L >L(2)
=< (Koo Doz ) = D10 1oo[(Dy )G )L, (G )L > 12 (115)

10,00

and

< Tgo(Dvoo,o)l] ood}(D )jUV
=< K3 (DOIR)

140,00

0, 7)f,TU, (0,T)f >z
1) 00,0/ (D )G, [GT 1L >z - (116)

Now, we treat the case of ¢ < 0 (A = 0) for the first limit. The proof for the second is obtained
by the same way. By supposing that supp(g) C [0, R], R > 0 fixed, and T' > — ln( z(0)) +

L 1n(Cy,) + 3, we have supp (GT) C]z(0),0[. Hence

2Kk0

T _ T
L0, 400 (DcAy,l—oo,z(O)] ® DcAu,[z(o>,+oo[> I ]L =0 Ljg,4o0f (DcAu,[zw),m[) I ]L’ (117)

with
L, ool (Drwa) = 10,00l (Do) = Liostool (Dons oot ) (118)

and
100 (DgAy,l—oo,z(O)] ® DcAu,[z(0>,+oo[> [GT], =08 X7y, ( S Ay, [2(0), 4ol ) [G¢",, (119)

with
T,lgo (DVoo,O) = :KZES,GO (D§Au,0) = jclTZ)s,oo (DcAu,[Z(O),JrOO[) . (120)

From lemma 4.4, the following operator is compact in L]%@:

ms
Khio,o0 ( iy J-o0:0)] D DgAV,[z(O),+oo[> L{0,00] (DcAu,l—oo,z(on @ DgAV,[z(o),+oo[)

- KZ?,UO (DgA.,,R) 1[0,+00[ (DcA,,,R)

By lemma VL6 in [2]: [GT], — 0, T — 400 in L%. Hence, we have the following limits:

HO ® Klio.oo ( $Au,[2(0), +oo[) Lo, o0f (DcAy,[z(O),+oo[> [GT]L (121)
KZEJS,UO ( sAv,R ) 1[0,+00[ (DcAu,R) [GT]LH - 0’ T — +oo.

and

pim < (Koo (D o) = D ool (Drs, G L, (G >

= Jim < (K, (D) = Dlosoel (Do, )G 1, [67]0 > - (122)

10,00 sAy,R
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First, we remark that using the Fourier transform F:

1
1 D = |z T+ 6A,) | F.
'7: [0’+OO[( §Au,R) [2 + 92 52 + §2 (25 + N ) '7:
Moreover
1900 (Do, ) L1000 (Doay ) (G 1L = Kt (Dy ) L0, o0 (Do )G N | (123)
2
1€ 1 . 2
<0 [ - = et )| |7 ([67],) O a5, ¢ >0
+oo
+Cy / |9 GETY + 6 A,) — s, (it P |7 ([GT],) () de, o >0,
0
¢ 1 i
i . 2
01/ —1! €T + B(T)sA,)| |0(n)]? dn,
oo n n PN
Kms - AV Kms . Fl d
g ‘ fio (47T + ) = (5 )| 0P
=L+ (124)
By a tedious but straightforward calculations, we obtain that
ms .0 ms . N 1
Kio.00 <ZB(T) —i—gAV) Koo ( B(T) ) — 0, T —+o00, n>0. (125)
Then, thanks to Lebesgue’s theorem limy_, oo [1 = limp_, 4o Io = 0. We deduce that
Tl_lg_loo < (fK;TZ)s,ao (DgA,,,R) - 1)1[0,+oo[(DgA,,,R )[GT]Lv [GT]L >L1%§
= Jim < (K0 (Do) = Dl (Do IGT 1 (67N >z - (126)
which entails the result. u
Lemma 4.6
Given f € CP(R)* and
glt) == (W, f) (1 = 20), (127)
then
HJUV(O,T)f - [GT/Q]LHO 50, T - +oo, (128)
and
JUy(0,T)f =0, T — +oo in L3 (129)
Proof:
This result is a consequence of lemmas 6.5, 6.7 and 6.9 of [14] |

With this previous lemma and since all operators are uniformly bounded in L2 norm and C§°(R)*

is dense in L%{ , we obtain easily:
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Lemma 4.7
Given f € L%, then for A >0 :

TLHJIrloo < (KT, ,00 (Dvoo,o) - 1)1[6,+OO[(DVOO,O )jUV 0,7)f, JU, 0, 7)f >L(2)

= Tim < (KT, (D) = Djs oo (D G20, (G721 > 15, (130)

T-5+00
i < X75(D, )i (Dy )T, (VTS TU, (0.1)F >4
= T1—1>I-iI—100 <Xi (70( Voo 0 )1}—00,5](DV00,0 )[GT/Z]IH [GT/Z]L >Lga (131)

Lemma 4.8
The following operators are compact in LE:

1[6,+oo[(Dv,0 ) - 1[6,+oo[(Dvoo,0 ) (132)
1} oo&](Dvo) _1} oo6](Doo,0) (133)
1o(Dyo) = X756(Dy ) (134)

Proof:
From lemma III-10 in [2], we have the result for (132) and (133). For the last operator and as
for the proof of lemma 4.4, we use the Helffer-Sjostrand formula. We must check that:

(D, —2) = (D,., —2)7H <CIS2|™%, z€C\R (135)
and

(D, — z)1 — (D —2)" Y compact in LE for z € C\ R

Voo ,0

For the second property, we remark that
(DV,O - Z)il - (Dvoo,o - Z)il = (DV,O - Z)il (V - V) ( Voo,0 Z)il for ze€C \ R. (136)

Moreover, lim,, s oo (Voo(rs) — V(r4)) = 0 and (Voo — V) € C°(R). By the Sobolev embedding,
we obtain that 11,(g)n] (Voo — V) (D, , —#) ' is compact in L§ for all n € N and z € C\R. As
we have clearly

L2y Voo = V) (D —2) ' = (Vo = V) (D, —2) |, = 0, 1 — +o0,

we conclude that (136) is compact in L3. Finally, since (Voo — V) € L®(R) and [|(D — 2)7Y| <
C|Sz|™t, C > 0 with D self-adjoint on L3, by (136), estimate (135) is satisfied. |

Lemma 4.9
Given f € L%, then for A >0 :

lim < ( 1,00 (Dv,o) - 1)1[6,+oo[(DV,0 )ij (O,T)f, ij (O,T)f >L'§

T—+o00
= llr_lI_l < (KA o'o(DVoo,O) - 1)1[6,+oo[(DVoo,0 )jUV 0,7)f, JU, 0, 7)f >L'§: 0,
(137)
lim <Xy (70( V,0 )1} ,5](Dv,0 )JUV (OaT)fa ij (OaT)f >L'(2)

T— 400
= Tgrfoo <Xi 0'0( Voo ,0 )1]700,6} (Dvoo,o )ij (0,7)f, JU, 0,7)f >Lg: 0. (138)
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Proof:
For K =X7;, —land 14 =15y or K =X7'7 and 14 =1; 5, we have:

K(Dv,o )1:|:(DV,0 ) :K(Dv,o ) (1:|:(Dv,0 ) - 1:|:(Dvoo,0 )) + (K(DV,O ) - K(Dvoo,o )) 1:|:(Dvoo,0 )
+ K(Dvoo,o )li(Dvoo,o )

We obtain the equality of the limits, by using the previous formula, lemma 4.8 and the property
(129). Finally, we conclude the proof of this lemma thanks to lemmas 4.7, 4.5 and 4.2. [ ]

Lemma 4.10
Given f € L%, then for A >0 :

. 2 - ZJD ZJD -1 B
lim Hl[(g,Jroo[(Dvﬁo ).,7UV(0,T)fH0 =< W, f,ero OR (1 + ero O,R) VVo,Rf > 2, (139)

T—+o00
with
5= 12
7o
Proof:
See lemma 6.10 in [14]. ]

Proposition 4.3
Given f € L%, then for A >0 :

lim < K75, (D )T, (0,1)f, Ty (0,1)f >a=< KDy )W, £ W, f >12,  (140)

T—~+o00
with
27
o= —.
Ko
Proof:

By a straightforward calculation, we have

1,00

< X5 (Dy,)JU, (0,T)f,TU, (0,T)f >12

ms qQ
=< K750 (Dyy )15 400(( Dy )T Uiy (0,T) f, T Uy, (0,T)f >p2, 6= ==

o
< KT (D)L (D )T Uy (0,1)F, TU, (0,1)f >3
=< (K75, (D) = 1) s oD )TU, (0.7)f, TU, (0.T)f >3,
+ {15 400((Dyo ) TGy, (0.T) £ 5
< KT (Do )LD )T Uy (0,1)F, U, (0,1)f >3
The first and the third term are treated by lemma 4.9 and the second term by lemma 4.10. =

Proposition 4.4
Given f € L%, then for A >0 :
Tl—i>r-ir-loo < Ko (Drp )Uy (0,1, G, (0, 1) f ZLE=S Lo (D )in[z(owoo[f’ ij[z(omoo[f > L3

<KD, W W f >, (141)
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with

Proof:
With a simple calculation, we obtain that
< X1, (D, )G, (0,7)f,U, (0,T)f > 12
=< K73 (D, )T, (0,T)1. U, (0,T)f >
+ < K75 (Do )1 = T, (0,T)f, (1 = TN, (0,T)f >p2
2R < L soo[(Dyg )X = TN, (0,T7) f, 15 400 (Dy ) TGy (0,T) f >z

The last term vanishes as T' — +o0o thanks to limit (129) and lemma 4.1. By lemmas 4.10 and
4.1, we conclude that the two first terms are zero as T — +o00. [ |

Proof of theorem 4.1 :

By lemma 4.1, the wave operator W Lol exists and is an isometry from L2 onto PaC(Dv,[z(o),+oo[ )L3.
Hence by using the operators (65), (63) we deduce that
= P ew, v @soe Ry A 20 (142)
(ln)ez

exists and is an isometry from L%, onto P,.(Do)L3. By definition, we have

o, =W, ), axo0

A,—

According to the chain rule theorem, the following wave operator

A,D +

W = ﬂ;_} (W7>* : Pac(Do)L% — Li_}, A > 0. (143)

is an isometry from Pac(DO)L onto L2 . With the help of Lebesgue theorem, proposition 4.4,
the properties of the operators (65), (63) and the properties (62), (66) and (74), we obtain the
following limit:

lim < X™, (Do) U0,T)f,U0,T)f >

T—+o00 Ho,00
= TETOO ‘:K;Tosao( Viw0 5)le,u (0’ T) lynf? UVl,u (0’ T)lean >L(2)’
(I;n)eT

= Z <X 00( Vi, 0 )le,,, (0, T)Rp f UV,,U (0, T) Ry, f >L§’

(I;n)eT
= Z < 717?;0 (DVI,,,,O )sz,,,[z(o),ﬂo Rinf W, L [2(0), 400l le"nf L2

(I;n)eT

+ Z < ‘JCT;(DO, ) faW ‘IRlnf >L2
(L,n)ex

=: 51 + 5.
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From the definition of W~ and W, and the intertwining properties, we deduce that for A>0

_ - ms v — 14
S1= Z < WVI,,,,[Z(O),+00[ 1,00(DV,R) it WVI,,,,[Z(O),+00[ inf ~ L3
(l,;n)eT

=< W_::KT;O (Dgy +9)f, W_:f >L3
=< W WKW, (Den)f, W, , W, f >Lz

10,00

10,00

10,00

=< Q;_} Ko o0 (Dsr) f, ﬂ;’_, f >Lz_>
We define

and remark that

iP?“D<— :P;l = @ EilnDo,R ;In_é? 0= ﬁ

(Ln)eT "o
Hence, with (62) and (82), we have
Sy =< P K5 (D) f, P f > L2, =7%.L2,

_27r

5=19.

=< JCZ’;Z(DH)Q(_—J{?(Z(_—J{ >r2s M:eada o ) :
= Ko 7o

Therefore, we obtain limit (55). ]

4.3 Proof of theorem 3.1

By the identity of polarization, it is sufficient to evaluate for @ € C$°(M,.y)* the following limit:

\Ijjoll(q)T)\I’coll(q)T)) .

lim w

T—+00 Meoll (

Since for T' > 0 large enough, we have:
Sco“@T — U(O, T)Sbh®7 Sth = / U(_t)(b(t)dt,
R

we obtain that

TETOO Yrteonn (‘I’fou(q)T)‘I’cou(q’T)) = TETOO < jc;Tos,oro(]-)O)Scoucl’Ta Seon®” >89
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Therefore, thanks to limit (144) of theorem 4.1, we deduce that for A >0 :

lm w,, (U, (07)W. (D7) =< K, (D, )R, Sun®, 2 S, ® > L

T—+00 10,00
+ < K}Tz’(DH )Q;Sbh¢7 Q(:Sbh¢ >L2
=<Ky (Dy )8, L QL 0,8, 9 0> |
£ <K (D )S. Q0,5 QL d >p
= Wil (T ()T, (2_2))
+ WUy (Q 9T, (| ®)).

KMS
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