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Abstra
t. - We prove the Hawking e�e
t for a gravitational 
ollapse of 
harged star, stationary

in the past and 
ollapsing to a bla
k hole in the future. In the past, the ground state of the

Dira
 �elds is given by a KMS state with unspe
i�ed temperature.

1 Introdu
tion.

This arti
le extends our previous investigation [14℄ about the Hawking e�e
t [11℄ for the Dira


�eld. In [14℄ we 
onsidered a 
harged star stationnary in the past, and 
ollapsing to a bla
k

hole in the framework of the semi
lassi
al approximation where the ba
k-rea
tion of the �eld on

the metri
 is negle
ted. Furthermore, the ground state in the past was given by the Boulware

va
uum. In this new work and always for the semi
lassi
al regime, we study the same 
ollapsing

star, but in the past, we 
onsider a ground state given by a KMS state with unspe
i�ed tem-

perature. In the 
ase of 
ollapse in expending universe the temperature physi
ally relevant is

that of Gibbons-Hawking asso
iated to the 
osmologi
al horizon [10℄. As in [14℄, we prove the

emergen
e of thermal state 
oming from the future bla
k hole whi
h is independent of the story

of the 
ollapse and the nature of the star surfa
e. Moreover, with the results of this paper and

the previous, we also remark that the 
hoi
e of the ground state in the past does not modify

the 
ara
teristi
 of the 
ux of parti
les 
oming from the horizon of the future bla
k hole.

During the 
ollapse the star be
omes a bla
k hole. This bla
k hole is des
ribed in term the

S
hwarzs
hild 
oordinates (t; r; !) as the globally hyperboli
 manifold (M

bh

; g), (see for example

[12℄, [16℄, [20℄)

M

bh

:= R

t

�℄r

0

; r

+

[

r

�S

2

!

; 0 < r

0

< r

+

� +1;

g

��

dx

�

dx

�

= F (r)dt

2

� F

�1

(r)dr

2

� r

2

d!

2

; (1)

d!

2

= d�

2

+ sin

2

�d'

2

; ! = (�; ') 2 [0; �℄ � [0; 2�[;

F (r) = 1�

2M

r

+

Q

2

r

2

�

�r

2

3

;

where Q 2 R, M > 0 and � � 0 are respe
tively the ele
tri
 
harge, the mass, the 
osmologi
al


onstant. Here r

0

and r

+

are the radius of the horizon of the bla
k-hole and the radius of the


osmologi
al horizon and moreover

F (r

0

) = F (r

+

) = 0; 2�

0

= F

0

(r

0

) > 0; 2�

+

= F

0

(r

+

) < 0; r 2℄r

0

; r

+

[) F (r) > 0; (2)
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with �

0

, �

+

the surfa
e gravity at the bla
k hole horizon and at the 
osmologi
al horizon. If

the 
osmologi
al 
onstant � = 0, then (M

bh

; g) des
ribes the asymptoti
ally 
at spa
e time of

Reissner-Nordstr�m with

F (r) = 1�

2M

r

+

Q

2

r

2

; 0 < jQj �M;

r

0

=M +

p

M

2

�Q

2

; r

+

= +1:

We introdu
e the Regge-Wheeler 
oordinate su
h that

dr

�

(r)

dr

= F

�1

: (3)

With this new radial 
oordinate, the horizons are pushed away at in�nities:

r

�

(r)! �1 () r! r

0

; � � 0

r

�

(r)! +1 () r! r

+

; � > 0; r

�

(r)! +1 () r ! +1; � = 0:

Hen
e, we de�ne the spa
e time outside the 
ollapsing star with mass M > 0 and r

�

-radius

z(t); t 2 R in an expanding or asymptoti
ally 
at universe, su
h that :

M


oll

:=

�

(t; r

�

; !) 2 R

t

� R

r

�

� S

2

!

; r

�

� z(t)

	

: (4)

The reasonable assumptions of generi
 
ollapsing examined in [1℄ leads to the following properties

for z(t):

z 2 C

2

(R); 8t 2 R; � 1 < _z(t) � 0; t � 0) z(t) = z(0) < 0: (5)

z(t) = �t� C

�

0

e

�2�

0

t

+$(t); C

�

0

> 0; j$(t)j+ j _$(t)j = O

�

e

�4�

0

t

�

; t! +1: (6)

A

ording to the Birkho� theorem and sin
e the spheri
al symmetry of the star is maintained

during the 
ollapse, the metri
 on M


oll

is just the Lorentzian metri
 g de�ned in (1).

On (M


oll

; g) we 
onsider the Dira
 equation for a fermion of mass m > 0 and 
harge q 2 R:

i


�

�

r

�

	+ iq

Q

r

	�m	 = 0: (7)

The term

Q

r

is the ele
tromagneti
 potential sin
e we take ele
tromagneti
 intera
tions between

the �eld and the 
harged star into a

ount. Here 


�

are the Dira
 matri
es in 
urved spa
e time

and

�

r

�

the spinor �elds 
ovariant derivative. Our model of the star is very simple and very


onvenient sin
e our star is in fa
t a mirror. This assumptions enable us to avoid to treat the

di�erent intera
tion and behavior of the 
uid inside the star during the 
ollapse. Therefore, on

the star surfa
e,

S :=

�

(t; r

�

; !) 2 R

t

� R

r

�

� S

2

!

; r

�

= z(t)

	

;

we put the following 
onservative boundary 
ondition, written for (t; r

�

; !) 2 S, as

n

j




j

	(t; r

�

; !) = ie

i�


5

	(t; r

�

; !); 


5

:= �i


0




1




2




3

(8)
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where n

j

is the outgoing normal of subset of R

t

� R

r

�

� S

2

!

and � the 
hiral angle. We suppose

for the te
hni
al reasons that � 2 R if r

+

< +1, and � 6= (2k + 1)�, k 2 Z if r

+

= +1. This


onservative boundary 
ondition is the generalized MIT bag boundary 
ondition [5℄ 
auses a

re
exion of the �elds on the star surfa
e.

In the se
ond part of this work, we state the theorem giving a solution of the mixed hyperboli


problem (7)-(8) with the help of a propagator. In this same part, we also introdu
e the useful

wave operators outside the future bla
k-hole. In the �fth part, we state and interpret the main

theorem of this work using the Quantum Field Theory. To do this, we 
onstru
t the lo
al algebra

of observable U(M


oll

) as in [6℄ and use the wave operators of the se
ond part. Finally in the

last se
tion, we expose the mathemati
al proof of the main theorem of this arti
le.

2 Classi
al �elds.

2.1 Dira
 equation.

By using the de�nition (1) and a 
al
ulation from [2℄ and [17℄ for equation (7), we set in a

hamiltonian form the mixte hyperboli
 mixed problem on (M


oll

; g) related to (7) and (8) :

�

t

	 = iD

t

	; z(t) < r

�

; (9)

_z


0

� 


1

p

1� _z

2

	(t; z(t)) = ie

i�


5

	(t; z(t)) (10)

	(t = s; :) = 	

s

(:) 2 L

2

s

; (11)

where L

2

t

is the energy spa
e su
h that

�

L

2

t

:= L

2

(℄z(t);+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

; k:k

t

�

(12)

and

D

t

= �

qQ

r

+ �

1

 

�

r

�

+

F (r)

r

+

F

0

(r)

4

!

+

p

F (r)

�

�

2

r

(�

�

+

1

2


ot �) +

�

3

r sin �

�

'

+ �

4

�

; (13)

�

1

:= i


0




1

= iDiag(�1; 1; 1;�1); �

2

:= i


0




2

; �

3

:= i


0




3

; �

4

:= �m


0

; (14)

with

D(D

t

) =

�

	 2 L

2

t

; D

t

	 2 L

2

t

;

_z


0

� 


1

p

1� _z

2

	(z(t); !) = �ie

i�


5

	(z(t); !)

�

: (15)

Here the Dira
 matri
es 


k

, satisfy




a




b

+ 


b




a

= 2�

ab

I

I

I

R

4
; a; b = 0; ::; 3; �

ab

= Diag(1;�1;�1;�1): (16)




0

= i

�

0 �

0

��

0

0

�

; 


k

= i

�

0 �

k

�

k

0

�

k = 1; 2; 3; (17)

with the Pauli matri
es,

�

0

=

�

1 0

0 1

�

; �

1

=

�

1 0

0 �1

�

; �

2

=

�

0 1

1 0

�

; �

3

= i

�

0 �1

1 0

�

: (18)
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We introdu
e the following notation

8� 2 L

2

t

; k�k

t

= k[�℄

L

k ; [�℄

L

(r

�

; !) =

�

�(r

�

; !) r

�

2℄z(t);+1[

r

�

0 r

�

2 Rn℄z(t);+1[

r

�

:

A

ording to proposition III.2 in [2℄, a unique solution 	(t) of (9), (10) and (11) 
an be expressed

with the propagator U(t; s):

Proposition 2.1

Given 	

s

2 D(D

s

), then there exists a unique solution [	(:)℄

L

= [U (:; s)	

s

℄

L

2 C

1

(R

t

;L

2

BH

) of

(9), (10) and (11) su
h that, for all t 2 R

	(t) 2 D(D

s

); k	(t)k

t

= k	

s

k

s

:

Moreover, U(t; s) 
an be extended in an isometri
 strongly 
ontinuous propagator from L

2

s

onto

L

2

t

.

In the same way, we 
onsider the hyperboli
 problem related to (7) on (M

bh

; g):

�

t

	 = iD

BH

	 (19)

	(t = 0; :) = 	

BH

(:) 2 L

2

BH

; (20)

where the di�erential operator D

BH

has the form (13) but de�ned on

�

L

2

BH

:= L

2

(R

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

; k:k

�

: (21)

In [13℄, we prove that the hamiltonian D

BH

is self adjoint with dense domain

D(D

BH

) =

�

	 2 L

2

BH

; D

BH

	 2 L

2

BH

	

: (22)

Hen
e by the spe
tral theorem, we have:

Proposition 2.2

The problem (19)-(20) has a unique solution 	 2 C

0

(R

t

;L

2

BH

) given by the strongly 
ontinuous

unitary group U(t) := e

itD

BH

:

	(t) = U(t)	

BH

; 	(0) = 	

BH

:

Moreover

k	(t)k = k	

BH

k:

2.2 S
attering for Dira
 �elds by an eternal bla
k-hole

Our result on the Hawking e�e
t follows from a asymptoti
 analysis for the propagator U(0; T )

as T ! +1. As the star be
omes a bla
k hole as T ! +1, we strongly use that the dynami
s

are simplier in vi
inity of the two following asymptoti
 regions: r

�

! �1 (bla
k hole horizon)

and r

�

! +1 (
osmologi
al horizon when � > 0 or the asymptoti
ally 
at spa
e time when

� = 0 ). This is the reason why we introdu
e the wave operators for the eternal 
harged bla
k-

hole. The existen
e and the asymptoti
 
ompleteness for these operators are already been the

subje
t of two previous works: [13℄ and [15℄. To investigate the behavior of the Dira
 �elds near

4



the bla
k hole horizon (resp. 
osmologi
al horizon � > 0 or asymptoti
ally 
at region � = 0),

we 
hoose a 
ut fun
tion �

 

2 C

1

(R

r

�

) (resp. �

!

2 C

1

(R

r

�

)) satisfying:

9 a; b 2 R; 0 < a < b < 1 �

 

(r

�

) =

�

1 r

�

< a

0 r

�

> b

; (resp: �

!

= 1� �

 

): (23)

As regards the asymptoti
 behavior of the �elds as r

�

! �1 (resp. r

�

! +1 when � > 0), we


ompare the solution of (19) on L

2

BH

with the solution of

�

t

	

 

= iD

 

	

 

�

resp: �

t

	

!

=D

�;!

	

!

�

(24)

where

D

 

:= �

1

�

r

�

�

qQ

r

0

�

resp: D

�;!

:= �

1

�

r

�

�

qQ

r

+

�

is self-adjoint on

L

2

 

:= L

2

(R

r

�

� S

2

!

; dr

�

d!)

4

; (resp: L

2

�;!

:= L

2

 

; � > 0);

with the dense domain

D(D

 

) = H

1

(R

r

�

;L

2

(S

2

!

))

4

�

resp: D(D

�;!

) = H

1

(R

r

�

;L

2

(S

2

!

))

4

�

:

Sin
e the matrix �

1

is diagonal, we remark that equations (24) are the shift equations a

ording

to the 
omponents. Hen
e, we de�ne the subspa
es of outgoing and in
oming waves L

2+

 

and

L

2�

 

su
h that L

2

 

= L

2+

 

�L

2�

 

,

L

2+

 

:= f	 2 L

2

 

; 	

2

= 	

3

= 0g; L

2�

 

:= f	 2 L

2

 

; 	

1

= 	

4

= 0g; (25)

and

L

2

�;!

= L

2+

�;!

�L

2�

�;!

; L

2+

�;!

:= L

2+

 

; L

2�

�;!

:= L

2�

 

: (26)

Hen
e, we de�ne the wave operatorsW

�

 

at the bla
k-hole horizon for � � 0 andW

�

�;!

at the


osmologi
al horizon when � > 0, by

W

�

 

	

�

= lim

t!�1

U(�t)J

 

e

itD

 

	

�

in L

2

BH

; 	

�

2 L

2�

 

; � � 0 (27)

W

�

�;!

	

�

= lim

t!�1

U(�t)J

�;!

e

itD

�;!

	

�

in L

2

BH

; 	

�

2 L

2�

�;!

; � > 0: (28)

where J

 

and J

�;!

are respe
tively the identifying operator between L

2

 

and L

2

BH

and the one

between L

2

�;!

and L

2

BH

:

J

 

: 	

�

(r

�

; !) 7! �

 

(r

�

)r

�1

F

�1=4

(r)	

�

(r

�

; !); 	

�

2 L

2�

 

; � � 0

J

�;!

: 	

�

(r

�

; !) 7! �

!

(r

�

)r

�1

F

�1=4

(r)	

�

(r

�

; !); 	

�

2 L

2�

�;!

; � > 0:

The spa
e-time is asymptoti
ally 
at at the in�nity when � = 0. Therefore, we 
ompare the

solutions of (9) on L

2

BH

with the solution 	

!

of the Dira
 equation on Minkowski spa
e-time

with spheri
al 
oordinates (�; !) 2 R

+

�

� [0; �℄ � [0; 2�[, putting r

�

= � > 0 to avoid arti�
ial

long-range intera
tions :

�

t

	

!

= iD

0;!

	

!

(29)
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where

D

0;!

:= �

1

�

�

�

+

1

�

�

+

�

2

�

(�

�

+

1

2


ot �) +

�

3

� sin �

�

'

+ �

4

;

is self-adjoint on

L

2

0;!

:= L

2

(R

+

�

� S

2

!

; �

2

d�d!)

4

with the dense domain

D(D

0;!

) = H

1

(R

+

�

� S

2

!

; �

2

d�d!)

4

:

Sin
e the 
omparison of the solution of (9) on L

2

BH

with the solution of (29) on L

2

0;!

involves

matrix-valued long-range perturbations, it is ne
essary to modify the free dynami
 e

itD

0;!

as

in ours previous works [13℄ and [15℄. Given U

0;!

(t) the Dollard-modi�ed propagator, then we

de�ne for all 	 2 L

2

0;!

the wave operator W

�

0;!

at in�nity:

W

�

0;!

	 = lim

t!�1

U(�t)J

0;!

U

0;!

(t)	 in L

2

BH

; (30)

where J

0;!

is the bounded identifying operator between L

2

0;!

and L

2

BH

:

(J

0;!

	)(r

�

; !) :=

�

�

!

(r

�

)r

�1

F

�1=4

(r)r

�

	(r

�

; !) r

�

> 0

0 r

�

� 0

; 8	 2 L

2

0;!

Finally a

ording to [13℄, [15℄ and [14℄, we state the theorem :

Theorem 2.1

The wave operators W

�

 

, W

�

�;!

and W

�

0;!

, respe
tively de�ned on L

2�

 

, L

2�

�;!

and L

2

0;!

exist

and are independent of the 
ut-o� fun
tions �

 

, �

!

and �

!

satisfying (79). Moreover:

Ran

�

W

�

 

�W

�

�;!

�

= L

2

BH

; (� � 0)

and

8	

�

2 L

2�

 

; � � 0; m � 0; kW

�

 

	

�

k = k	

�

k

L

2

 

8	

�

2 L

2�

�;!

; � > 0; m � 0; kW

�

�;!

	

�

k = k	

�

k

L

2

�;!

8	 2 L

2

0;!

; � = 0; m > 0; kW

�

0;!

	k = k	k

L

2

0;!

:

3 Quantum Fields

3.1 Constru
tion of the Dira
 Quantum Fields

To des
ribe the Quantum e�e
ts of the 
ollapse, we need to introdu
e the framework of the

Quantum Field Theory. For a general dis
ussion on the Quantum Field Theory in 
urved

spa
etime, we 
ite the following and non exhaustive list of books: [3℄, [8℄, [18℄, [21℄. This theory

are usually de�ned on 
at spa
e-time. In Minkowski spa
e-time, we have a natural 
hoi
e for

the va
uum state: the va
uum related to the inertial observators. In this 
ase, it is suÆ
ient to


onstru
t a �eld operator whi
h satis�es a given �eld equation on a Hilbert spa
e 
orresponding

6



to an inertial observator (we 
hoose a parti
ular Cau
hy hypersurfa
e of the spa
e-time). Indeed,

thanks to the Lorentz transformation, this 
onstru
tion is equivalent for all inertial observators.

But in our 
ase, we deal with a 
urved spa
e-time and in general manifolds, hen
e we have not

the equivalent Lorentz transformations and any preferential 
hoi
e for the va
uum. Then, we

adopt the point of view introdu
ed by J. Dimo
k in [6℄ and [7℄. In [7℄ and for the spin 1/2 �elds,

the author suggests a 
onstru
tion for lo
al observables to globally hyperboli
 manifolds whi
h

is independent (up to a net isomorphism) of the representation of the CAR, the 
hoi
e of the

spin stru
ture and the Cau
hy hypersurfa
e.

Before to explain this 
onstru
tion, we de�ne on a 
omplex Hilbert spa
e (H; < :; : >

H

) the

Fermi-Dira
 Fo
k spa
e des
ribing the state with an arbitrary number of non intera
ting 
harged

fermions. Given a Dira
-type equation satis�ed by the �eld f with Hamiltonian H de�ned on

H:

�

t

f = iH f: (31)

We 
hoose the spe
tral proje
tors P

+

and P

�

su
h that

P

+

:= 1

℄�1;0℄

(H ); P

�

:= 1

[0;+1[

(H ): (32)

Then, we introdu
e the Fermi-Dira
-Fo
k spa
e for (H; < :; : >

H

):

F(H) :=

+1

M

n;m=0

F

(n;m)

; F

(n;m)

(H) := F

(n)

(H

+

)
 F

(m)

(H

�

); (33)

where

F

(0)

(H

+

) := C ; F

(0)

(H

�

) := C ; F

(n)

(H

+

) :=

n

^

k=1

H

+

; F

(m)

(H

�

) :=

m

^

k=1

�H

�

(34)

and

H = H

+

� H

�

; H

+

:= P

+

H; H

�

:= P

�

H: (35)

Here, � is the 
harge 
onjugation (see [19℄ se
tion 1.4.6). On F(H), we introdu
e a(P

+

f)

and a

�

(P

+

f) the parti
le annihilation and 
reation operators and also b(P

�

f), b

�

(P

�

f) the

anti-parti
le annihilation, 
reation operators. We 
an �nd the their rigorous de�nition in the

appendix A in [2℄ or in the book [4℄. Therefore, we de�ne the anti-linear quantized Dira
 �eld

operator 	

	

	 and its linear adjoint 	

	

	

�

:

f 2 H 7�!	

	

	(f) := a(P

+

f) + b

�

(�P

�

f) 2 L (F(H)) ; (36)

and

f 2 H 7�!	

	

	

�

(f) := a

�

(P

+

f) + b(�P

�

f) 2 L ((F(H)) :

Moreover, these operators are bounded

k	

	

	(f)k = kfk; k	

	

	

�

(f)k = kfk; f 2 H

7



and thanks to the 
lassi
al properties of the 
reations and annihilation operators, it satis�es the


anoni
al anti-
ommutation relations (CAR):

	

	

	(f)	

	

	(g) +	

	

	(g)	

	

	(f) = 0; 	

	

	

�

(f)	

	

	

�

(g) +	

	

	

�

(g)	

	

	

�

(f) = 0; f; g 2 H

	

	

	

�

(f)	

	

	(g) +	

	

	(g)	

	

	

�

(f) =< f; g >

H

1

We 
onsider the C

�

-algebra U(H) generated by the �eld operators 	

	

	

�

(f)	

	

	(g), with f; g 2 H and

introdu
e the KMS state !

Æ;�

KMS

su
h that for f; g 2 H:

!

Æ;�

KMS

(	

	

	

�

(f)	

	

	(g)) :=< K

ms

�;�

(H )f; g >

H

; (37)

with, for all x 2 R

K

ms

�;�

(x) := �e

�x

(1 + �e

�x

)

�1

; � := e

�Æ

; � > 0; Æ 2 R: (38)

On the sub-algebra U(H

+

) (resp. U(H

�

)) of U(H), the state !

Æ;�

KMS

provides a des
ription of an

thermodynami
al equilibrium state for a gas nonintera
ting Fermi parti
les (resp. anti-parti
les)

with temperature 1=� > 0, 
hemi
al potential Æ (resp. �Æ) and a
tivity � (resp. 1=�).

Now, a

ording to the work of J. Dimo
k [7℄, we 
onstru
t the algebra of lo
al observables

on a given globally hyperboli
 
urved spa
e-time M with a foliation by a family of Cau
hy

hypersurfa
es �

t

:

M =

[

t2R

�

t

:

We 
onsider a �xed hypersurfa
es �

t

and put H = L(�

t

)

4

. Using the previous de�nition of

Dira
 quantum �eld (36), we de�ne on L(�

t

)

4

the quantized Dira
 �eld 	

	

	

a

and U(L(�

t

)

2

) the

C

�

-algebra generated by 	

	

	

�

a

(�

1

)	

	

	

a

(�

2

), with �

1

;�

2

2 L(�

t

)

4

. Moreover we introdu
e the

following operator

S

A

: � 2 C

1

0

(M)

4

7�! S

A

� :=

Z

R

P (t; s)�(s)ds 2 L(�

t

)

4

; (39)

where P (t; s) is the isometri
 propagator from L(�

s

)

4

onto L(�

t

)

4

, related to the Dira
 �eld in

M


oll

. Then, we de�ne the lo
al quantum �eld inM by the operator:

	

	

	

A

: � 2 C

1

0

(M)

4

7�!	

	

	

A

(�) := 	

	

	

a

(S

A

�); (40)

and, for any open set O �M, we introdu
e U(O) the C

�

-algebra generated by 	

	

	

A

(�

1

)	

	

	

A

(�

2

),

supp(�

j

) � O, j = 1; 2. Finally, we have:

U(M) = adh

 

[

O

U(O)

!

:

Hen
e by J. Dimo
k [7℄, this 
onstru
tion is independent of the representation of the CAR, the


hoi
e of the spin stru
ture 
ontained in P (t; s) and the �xed Cau
hy hypersurfa
e �

t

with

t 2 R.

Now, we apply this pro
edure to the spa
e time outside the 
ollapsing starM


oll

but also to

the spa
e times near the future bla
k hole M

bh

and at the in�nity (r

�

! +1) M


at

or M

bh

,

8



with the intention of interpreting the Hawking e�e
t with the help of the wave operators (27),

(28) and (30).

For the stationary spa
e time M


oll

we have the following foliation :

M


oll

=

[

t2R

�

t

; �

t

:= ftg�℄z(t);+1[

r

�

�S

2

!

:

We 
onsider �

0

, and we put

H := L

2

(℄z(0);+1[�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

= L

2

0

; H := D

0

: (41)

Using the previous 
onstru
tion, we de�ne on L

2

0

the quantized Dira
 �eld 	

	

	

0

= 	

	

	

a

and U(H)

the C

�

-algebra generated by 	

	

	

�

0

(�

1

)	

	

	

0

(�

2

), with �

1

;�

2

2 H. A

ording to (39), we introdu
e

S


oll

= S

A

with P (0; t) = U(0; t) the propagator de�ned in proposition 2.1. Then, we de�ne the

lo
al quantum �eld in M


oll

by the operator

	

	

	


oll

: � 2 C

1

0

(M


oll

)

4

7�!	

	

	


oll

(�) := 	

	

	

0

(S


oll

�) (42)

and also U(M


oll

) the 
losed union for all open set O �M


oll

of U(O) the C

�

-algebra generated

by 	

	

	

�


oll

(�

1

)	

	

	


oll

(�

2

), supp(�

j

) � O, j = 1; 2. Then, a

ording to (37) and (41), we de�ne on

U(M


oll

) a ground state !

M


oll

as following:

!

M


oll

(	

	

	

�


oll

(�

1

)	

	

	


oll

(�

2

)) := !

Æ

0

;�

0

KMS

(	

	

	

�

0

(S


oll

�

1

)	

	

	

0

(S


oll

�

2

)) (43)

=< K

ms

�

0

;�

0

(D

0

)S


oll

�

1

; S


oll

�

2

>

H

; �

1

;�

2

2 H (44)

with

�

0

:= e

�

0

Æ

0

; Æ

0

2 R; �

0

> 0: (45)

Indeed, we suppose that our star whi
h is stationary in the past 
ollapses in a bath of fermions

and anti-fermions with temperature �

�1

0

> 0.

We des
ribe the quantum �eld at the horizon of future ba
k-hole. We 
onsider the stationary

spa
e-time M

bh

with the following foliation

M

bh

=

[

t2R

�

t

; �

t

:= ftg � R

r

�

� S

2

!

:

By using the same pro
edure as above we 
onstru
t U

 

(M

bh

) the 
losed union for all open set

O �M

bh

of U(O) the C

�

-algebra generated by 	

	

	

 

(	

1

)	

	

	

�

 

(	

2

), �

1

;�

2

2 L

2

 

where

	

	

	

 

: � 2 C

1

0

(M

bh

)

4

7�!	

	

	

 

(�) := 	

	

	

�

(S

 

�); (46)

and

S

 

:= S

A

; P (0; t) := e

�itD

 

: (47)

Here 	

	

	

�

(�) with � 2 L

2

 

is the quantum Dira
 �eld de�ned on the hypersurfa
e R

r

�

� S

2

!

. By

using (37), we 
onsider the Hawking thermal state:

!

Æ;�

Haw

(	

	

	

�

 

(�

1

)	

	

	

 

(�

2

)) := !

Æ;�

KMS

(	

	

	

�

�

(S

 

�

1

)	

	

	

�

(S

 

�

2

)); �

1

;�

2

2 C

1

0

(M

bh

)

4

(48)

=< K

ms

�;�

(D

 

)S

 

�

1

; S

 

�

2

>

L

2

 

; (49)
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with

� := e

�Æ

; Æ 2 R; � > 0: (50)

Finally we introdu
e the quantum �elds at in�nity when r

�

! +1. A

ording to � whi
h is

respe
tively positive or zero (
osmologi
al horizon or asymptoti
ally 
at spa
e-time), we 
onsider

the stationary spa
e-times

M

bh

= R

t

� R

r

�

� S

2

!

; M


at

:= R

t

� R

+

r

�

� S

2

!

:

As above, using the Fermi-Dira
 Fo
k quantization on R

r

�

� S

2

!

or R

+

r

�

� S

2

!

, we de�ne the

�elds 	

	

	

�;+

(�

1

) with �

1

2 L

2

�;!

or 	

	

	

0;+

(�

1

) with �

1

2 L

2

0;!

. Hen
e, we 
onstru
t U

!

(M

bh

)

and U

!

(M


at

). The algebra U

!

(M

bh

) is the 
losed union for all open set O � M

bh

of the

C

�

-algebras U

!

(O) generated by 	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

) with �

1

; �

2

2 L

2

�;!

	

	

	

�;!

: � 2 C

1

0

(M

bh

)

4

7�!	

	

	

�;!

(�) := 	

	

	

�;+

(S

�;!

�); � > 0 (51)

and

S

�;!

:= S

A

; P (0; t) := e

�itD

�;!

; � > 0: (52)

As to the algebra U

!

(M


at

), it is the 
losed union for all O �M


at

of the C

�

-algebras U

!

(O)

generated by 	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

) with �

1

;�

2

2 L

2

0;!

,

	

	

	

0;!

: � 2 C

1

0

(M


at

)

4

7�!	

	

	

0;!

(�) := 	

	

	

0;+

(S

0;!

�) (53)

and

S

0;!

:= S

A

; P (0; t) := U

0;!

(�t); (54)

where U

0;!

is the Dollard-modi�ed propagator. With (37), the thermal states on ea
h algebras

U

!

(M

bh

) and U

!

(M


at

) are given by

8�

1

;�

2

2 C

1

0

(M

bh

); !

Æ

0

;�

0

KMS

(	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

)) =< K

ms

�

0

;�

0

(D

�;!

)S

�;!

�

1

; S

�;!

�

2

>

L

2

�;!

;

with � > 0, and

8�

1

;�

2

2 C

1

0

(M


at

); !

Æ

0

;�

0

KMS

(	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

)) =< K

ms

�

0

;�

0

(D

0;!

)S

0;!

�

1

; S

0;!

�

2

>

L

2

0;!

:

3.2 Hawking e�e
t

The state

!

M


oll

(	

	

	

�


oll

(�

1

)	

	

	


oll

(�

2

)); �

j

2 C

1

0

(M


oll

)

4

; j = 1; 2;

gives the informations about the quantum 
u
tuations in a region ofM


oll

. But, we are interested

in the investigation of this previous state at last moment of gravitational 
ollapse when the

dete
tor is �xed with the respe
t to the variables (r

�

; !). As this 
ollapsing star be
omes a

bla
k hole, the dete
tor at the rest re
eives the informations from the 
reation of the bla
k hole

when this proper time t =1. Hen
e, we put

�

T

j

(t; r

�

; !) := �

j

(t� T; r

�

; !); �

j

2 C

1

0

(M


oll

)

4

; j = 1; 2;

and state the main theorem about the behavior of !

M


oll

at the last time of the 
ollapse :
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Theorem 3.1

Given �

j

2 C

1

0

(M


oll

)

4

; j = 1; 2, then we have for � � 0,

lim

T!+1

!

M


oll

(	

	

	

�


oll

(�

T

1

)	

	

	


oll

(�

T

2

)) = !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))

+ !

Æ

0

;�

0

KMS

(	

	

	

�

�;!

(


�

�;!

�

1

)	

	

	

�;!

(


�

�;!

�

2

));

with

T

Haw

=

1

�

=

2�

�

0

; Æ =

qQ

r

0

:

Let us interpret the previous theorem.We know that the state !

M


oll

represents the response

of a dete
tor at the rest in S
hwarzs
hild variables at time T . This dete
tor is initially put in

the state that 
orresponds for a stati
 observer to a fermioni
 gas, where the parti
les does not

intera
t between themselves and de�ned by the 
onstants of temperature �

0

> 0 and 
hemi
al

potential Æ

0

.

As T = +1, the dete
tor measures the 
u
tuation of the quantum 
u
tuations related to

!

M


oll

when the star be
omes a bla
k hole. In this situation, the dete
tor measures two types

of informations: about the �elds 
oming from the past in�nity (and falling into the bla
k hole)

and about the �elds 
oming from the the future horizon of the bla
k hole (going to the future

in�nity).

Sin
e the state !

Æ

0

;�

0

KMS


ontains the wave operators 


�

�;!

in its de�nition, !

Æ

0

;�

0

KMS

gives the

information about the �elds of the �rst type. It means that the dete
tor measure a quantum


u
tuation 
oming from the past in�nity whi
h is interpreted by a stati
 observer as a 
ux of

parti
les with the same 
hara
teristi
s that the initial ground state.

In the same way, sin
e !

Æ;�

Haw


ontains the wave operators 


�

 

in its de�nition, this state

gives the informations about the �elds 
oming from the future bla
k hole horizon. Indeed, the

dete
tor measures the emergen
e of the thermal state with temperature

T

Haw

=

1

�

=

2�

�

0

whi
h is interpreted by a stati
 observer as 
ux of parti
les and anti-parti
les with 
harge density

�

Haw

:=

1

�

qÆ =

q

2

Q

�r

0

:

We remark that the result is independent of the story of the 
ollapse, the boundary 
ondition

(the 
hara
teristi
 of the star surfa
e) and also the ground state sin
e we proved the same result

in [14℄ by supposing that the ground state is Boulware type in the past. This is a no hair result.

Moreover, the previous theorem is valid when � � 0. When � > 0, we 
onsider the DeSitter-

Reissner-Nordstr�m spa
e time outside the star before and during the 
ollapse. Let us re
all that

this 
urved spa
e time has a 
osmologi
al horizon at in�nity. In this 
ase, G. W. Gibbons and

S. W. Hawking have proved in [10℄ that an observer following any time like geodesi
s measures

an isotropi
 ba
kground of thermal radiation 
oming from the past 
osmologi
al horizon with

the (Gibbons-Hawking) temperature

T

GH

=

2�

�

+

:
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Here �

+

is the surfa
e gravity at the 
osmologi
al horizon de�ned in (2). Hen
e, a stati


observer interprets this radiation as 
ux of parti
les 
oming from the past 
osmologi
al horizon

with temperature T

GH

= �

�1

GH

and 
hemi
al potential Æ

GH

. Hen
e, we de�ne the ground state

!

M


oll

outside the 
ollapsing star. On U(M


oll

) and for all �

1

;�

2

2 L

2

0

we have

!

M


oll

(	

	

	

�


oll

(�

1

)	

	

	


oll

(�

2

)) := !

Æ

0

;�

0

KMS

(	

	

	

�

0

(S


oll

�

1

)	

	

	

0

(S


oll

�

2

))

=< K

ms

�

0

;�

0

(D

0

)S


oll

�

1

; S


oll

�

2

>

L

2

0

;

=<W

�

�;D

K

ms

�

0

;�

0

(D

0

)S


oll

�

1

;W

�

�;D

S


oll

�

2

>

L

2

�;!

;

=< K

ms

�

0

;�

0

(D

�;!

)S

�;!

W

�

�;D

�

1

; S

�;!

W

�

�;D

�

2

>

L

2

�;!

= !

Æ

0

;�

0

KMS

(	

	

	

�

�;!

(W

�

�;D

�

1

)	

	

	

�;!

(W

�

�;D

�

2

));

where W

�

�;D

is the wave operator linking the dynami
 outside the star before the beginning of

the 
ollapse and the free dynami
 at the past 
osmologi
al horizon (see (80), (142) and (143) for

the de�nition). Hen
e, in the 
ase of 
osmologi
al model with a positive 
osmologi
al 
onstant,

the only physi
ally relevant 
hoi
e for the �

0

and Æ

0

is

�

0

= �

GH

= T

�1

GH

=

�

+

2�

; Æ

0

= Æ

GH

:

4 Proof of theorem 3.1.

This se
tion is devoted to the proof of theorem 3.1. In other to demonstrate this previous

theorem se
tion 4.3, we prove the following sharp result:

Theorem 4.1

Given f 2 L

2

BH

, if � � 0, then

lim

T!+1

< K

ms

�

0

;�

0

(D

0

)U(0; T )f;U (0; T )f >

H

=< K

ms

�

0

;�

0

(D

�;!

)


�

�;!

f;


�

�;!

f >

L

2

�;!

+ < K

ms

�;�

(D

 

)


�

 

f;


�

 

f >

L

2

 

(55)

with

� = e

�Æ

; Æ :=

qQ

r

0

� =

2�

�

0

; 


�

 

:=

�

W

�

 

�

�

; 


�

�;!

:=

�

W

�

�;!

�

�

; 


�

0;!

:=

�

W

�

0;!

�

�

;

where W

�

 

, W

�

�;!

, W

�

0;!

are the wave operators respe
tively de�ned in (27), (28) and (30).

To prove the limit (55), we use the spheri
al symmetry property of the geometri
al framework.

Indeed, we introdu
e the spin-weighted harmoni
s to redu
e our study to a family of one dimen-

sional problems. This is the purpose of the next se
tion.

4.1 Redu
tion to a simplier problems thanks to the spheri
al symmetry.

Given Y

l

�

1

2

;n

the spin-weighted harmoni
s (see [9℄, [13℄) su
h that the families

n

Y

l

1

2

;n

; (l; n) 2 I

o

;

n

Y

l

�

1

2

;n

; (l; n) 2 I

o

; I :=

�

(l; n) : l �

1

2

2 N; l � jnj 2 N

�

;
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form a Hilbert basis of L

2

(S

2

!

) and ea
h Y

l

sn

, s = �1=2 satis�es the re
urren
e relations,

�

�

Y

l

sn

(!)�

n� s 
os �

sin �

Y

l

sn

(!) =

�

�

�

�

�i

p

(l � s)(l � s+ 1)Y

l

s�1;n

(!); �l > �s:

0; l = �s:

; (56)

�

'

Y

l

sn

(!) = �inY

l

sn

(!): (57)

Afterwards, we introdu
e the following Hilbert spa
es:

�

L

2

t

:= L

2

(℄z(t);+1[

r

�

; dr

�

)

4

; k:k

t

�

; 0 � t (58)

�

L

2

R

:= L

2

(R

r

�

; dr

�

)

4

; k:k

�

; (59)

L

2

BH

:= L

2

(R

r

�

; r

2

F

1=2

(r)dr

�

)

4

= P

r

L

2

R

; (60)

with

P

r

: 	 7! r

�1

F

�1=4

	: (61)

So, we express L

2

t

and L

2

BH

as a dire
t sum:

L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

; L

2

BH

=

M

(l;n)2I

E

�

ln

L

2

R

: (62)

where,

E

�

ln

: 	

ln

2 L

2

t

7! e

�i

�

2




5

P

r

	

ln




4

Y

ln

2 L

2

t

(63)

with

v 


4

u := (u

1

v

1

; u

2

v

2

; u

3

v

3

; u

4

v

4

); 8u; v 2 C

4

;

Y

ln

:=

�

Y

l

�

1

2

;n

; Y

l

1

2

;n

; Y

l

�

1

2

;n

; Y

l

1

2

;n

�

: (64)

De�ning the following restri
tion operator R

�

ln

su
h that

R

�

ln

: 	 2 L

2

t

7! e

i

�

2




5

P

�1

r

	

ln

2 L

2

t

; 	

ln

:=< 	; Y

ln

> (65)

and using (56), (57) for s = �1=2, we obtain the following de
ompositions:

D

t

=

M

(l;n)2I

E

�

ln

D

V

l;�

;t

R

�

ln

�

qQ

r

0

; (66)

D

V

l;�

;t

:= �

1

�

r

�

+ V

l;�

; V

l;�

= qQ

�

1

r

0

�

1

r

�

�

p

F (r)

�

mA

�

+

i

r

�

2

(l + 1=2)

�

; (67)

A

�

:=

�

0 a

�

�a

�

0

�

; a

�

:= diag(ie

i�

; ie

i�

); Z(t) =

s

1� _z(t)

1 + _z(t)

; (68)

D(D

V

l;�

;t

) =

�

	 2 L

2

t

; D

V

l;�

;t

	 2 L

2

t

;

Z(t)	

2

(z(t)) = 	

4

(z(t)); 	

1

(z(t)) = �Z(t)	

3

(z(t))g : (69)

For � 2 L

2

(B; dr

�

)

4

, B � R, we de�ne a L

2

-extension su
h that

k�k

L

2

(B; dr

�

)

4

= k[�℄

L

k ; [�℄

L

(r

�

) :=

�

�(r

�

) r

�

2 B

0 r

�

2 R nB

:

13



In the same way, we introdu
e

0 � t; H

1

t

:=

�

� 2 L

2

t

; �

r

�

� 2 L

2

t

	

; H

1

R

:=

�

� 2 L

2

R

; �

r

�

� 2 L

2

R

	

;

and a H

1

-extension su
h that for � 2 H

1

t

we have,

[�℄

H

2 H

1

R

; [�℄

H

(r

�

) :=

�

�(r

�

) r

�

2℄z(t);+1[

r

�

�(2z(t) � r

�

) r

�

2 Rn℄z(t);+1[

r

�

:

For the dynami
 D

V

l;�

;t

, we set proposition VI.2 in [2℄ whi
h gives a unique solution expressed

with the propagator U

V

l;�

(t; s) of:

�

t

� = iD

V

l;�

;t

�; t 2 R; r

�

> z(t); (70)

�

4

(t; z(t)) = Z(t)�

2

(t; z(t)); �

1

(t; z(t)) = �Z(t)�

3

(t; z(t)); (71)

�(t = s; :) = �

s

(:) 2 L

2

s

: (72)

Proposition 4.1

If �

s

2 D(D

V

l;�

;s

), then there exists a unique solution

[�(:)℄

H

= [U

V

l;�

(:; s)�

s

℄

H

2 C

1

(R

t

; L

2

R

) \ C

0

(R

t

;H

1

R

)

of (70), (71) and (72) with

�(t) 2 D(D

V

l;�

;t

):

Moreover,

k�(t)k

t

= k�

s

k

s

(73)

and U

V

l;�

(t; s) 
an be extended in an isometri
 strongly 
ontinuous propagator from L

2

s

onto L

2

t

.

The operators (63) and (65) are very useful to express U(t; s) de�ned in proposition (2.1) with

the help of U

V

l;�

(t; s) :

U(t; s) = e

i(s�t)

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

(t; s)R

�

ln

: L

2

s

=

M

(l;n)2I

E

�

ln

L

2

s

! L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

: (74)

Given a potential V 2 L

1

(R

r

�

) and an interval B := (a;+1) or B := (�1; a) and V 2

L

1

(R

r

�

), then, we de�ne on L

2

(B)

4

the self-adjoint operator D

V;B

with the dense domain

D(D

V;B

) su
h that

D

V;B

= �

1

�

r

�

+ V; (75)

D(D

V;B

) =

�

� 2 L

2

(B)

4

; D

V;B

� 2 L

2

(B)

4

; r

�

2 �B ) ~n


1

�(r

�

) = i�(r

�

)

	

; (76)

where �

1

is given by (14) and ~n is the outgoing normal of B. Using Kato-Relli
h and spe
tral

theorem, it is easy to �nd an unique solution of

�

t

� = iD

V;B

�; �(0) = 	

0

: (77)

using the propagator U

V;B

(t):

14



Proposition 4.2

Given �

0

2 D(D

V;B

), then there exists a unique solution

�(:) = U

V;B

(:)�

0

2 C

0

(R

t

;D(D

V;B

)) \ C

1

(R

t

; L

2

(B)

4

)

and

k�(t)k = k�

0

k:

Moreover, U

V;B

(t) 
an be extended, by density and 
ontinuity, in strongly unitary group on

L

2

(B)

4

.

Thus, we 
an express the propagator U(t) de�ned in proposition 2.2 with the help of U

V;B

(t)

and the operators (63) and (65):

U(t) = e

�it

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

;R

(t)R

�

ln

: (78)

Now, we introdu
e the useful wave operators for the next part. We 
hoose a 
ut-o� fun
tion

� 2 C

1

(R

r

�

), su
h that

9 a; b 2 R; �1 < a < b < +1 �(r

�

) =

�

1 r

�

< a

0 r

�

> b

; (79)

and the subspa
es L

2+

R

and L

2�

R

of L

2

R

with the following properties :

L

2+

R

=

�

� 2 L

2

R

; �

2

� �

3

� 0

	

; L

2�

R

=

�

� 2 L

2

R

; �

1

� �

4

� 0

	

:

Hen
e, we state the lemma:

Lemma 4.1

Given V = V

l;�

to simplify the notation.The wave operators

W

�

0;R

= s� lim

t!�1

U

0;R

(�t)�U

V;R

(t); in L

2

R

W

�

V;[z(0);+1[

= s� lim

t!�1

U

V;[z(0);+1[

(�t)(1 � �)U

V;R

(t) in L

2

0

(80)

exist and are independent of � satisfying (79). Moreover

Ran

�

W

�

0;R

�

= L

2�

R

; Ran

�

W

�

V;[z(0);+1[

�

= P

a


�

D

V;[z(0);+1[

�

L

2

0

(81)

where P

a


�

D

V;[z(0);+1[

�

is the proje
tor on the absolutely 
ontinuous subspa
e of D

V;[z(0);+1[

.

Proof: See lemma 6.3 in [14℄.

By using the operators (63) and (65), we easily remark that

P

r

�

W

�

 

�

�

=

M

(l;n)2I

E

�

ln

W

�;l

0;R

R

�

ln

: (82)
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4.2 Proof of theorem 4.1

Firstly, we des
ribe the main ideas of the demonstration. Our proof uses some results from

some previous works: the sharp study of the ba
kward propagator U(0; T ) [14℄, the s
attering

theory in the eternal 
harged bla
k hole [13, 15, 14℄. With operators (63) and (65) we obtain

the important relation:

K

ms

�

0

;�

0

(D

0

)U (0; T ) = e

iT Æ

M

(l;n)2I

E

�

ln

K

ms

1;�

0

(D

V

l;�

;0

)U

V

l;�

(0; T )R

�

ln

; Æ :=

qQ

r

0

;

Hen
e, using the spheri
al invarian
e, we redu
e our study to a one dimensional problem i.e. the

study of K

ms

1;�

0

(D

V

l;�

;0

)U

V

l;�

(0; T ) as T ! +1. Now, we forget subs
ripts ln and � to simplify

the notations. As in [14℄, we split our investigation in two part thanks to the following 
ut o�

fun
tion J 2 C

1

(R

r

�

) satisfying

9 a; b 2 R; 0 < a < b < 1 J (r

�

) =

�

1 r

�

< a

0 r

�

> b

: (83)

Hen
eforth, we have

K

ms

1;�

0

(D

V;0

)U

V

(0; T ) = K

ms

1;�

0

(D

V;0

)JU

V

(0; T ) +K

ms

1;�

0

(D

V;0

)(1 � J )U

V

(0; T ); (84)

where the two last term are asymptoti
ally orthogonal as T ! +1. Far from the star and

thanks to the hyperboli
ity, we have:

K

ms

1;�

0

(D

V;0

)(1� J )U

V

(0; T ) = K

ms

1;�

0

(D

V;0

)(1 � J )U

V;R

(�T );

where U

V;R

is de�ned by proposition 4.2. Sin
e this last propagator is straight linked with U(t)

by formula (78), the s
attering theory in the eternal 
harged bla
k hole is very useful to 
on
lude.

Near the star, we prove that

K

ms

1;�

0

(D

V;0

)JU

V

(0; T )f � 1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f; T ! +1; f 2 L

2

R

: (85)

This relation requires some te
hni
al lemmas, mainly of 
ompa
tness. Thus, the weak 
onver-

gen
e of JU

V

(0; T ) as T ! +1 is an important property to obtain the result. To 
on
lude the

proof, we use a result from a previous work [14℄:

1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f �< K

ms

1;�

(D

0;R

)W

�

0;R

f;W

�

0;R

f >

L

2

R

; T ! +1; f 2 L

2

R

; (86)

seeing that the wave operator W

�

0;R

is linked with W

�

 

by formula (82).

We introdu
e some notations :

D

V;0

:= D

V;[z(0);+1[

; L

2

0

:= L

2

([z(0);+1[

r

�

; dr

�

)

4

: (87)

For g := (g

1

; g

2

; g

3

; g

4

) 2 L

2

R

,

g

T

(:) := g(: � T ); T � 0

and

G(r

�

) :=

1

p

��

0

r

�

t

(�g

3

; 0; 0; g

2

)

�

�

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1

2

�

; r

�

< 0;

with C

�

0

> 0. To obtain relation (85), we set and proof some lemmas. For this, we use the

notations introdu
e by formulas (66) (67), (75) (76) and propositions 4.1 and 4.2.
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Lemma 4.2

Given

t

(0; g

2

; g

3

; 0) 2 C

1

0

(R)

4

, then for � � 0 :

lim

T!+1

< (K

ms

�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

= 0; (88)

lim

T!+1

< K

ms

�

0

;�

0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

= 0; (89)

Proof:

We remark that

�

�

F

��

G

T

�

L

�

(�)

�

�

2

= 4�

0

B(T )j�(B(T )�)j

2

; (90)

�(B(T )�) :=

Z

R

e

��

0

y

e

i�B(T )e

�2�

0

y

g(y)dy; B(T ) := C

�

0

e

�2�

0

T+�

0

: (91)

Moreover, sin
e G

T

2

� G

T

3

� 0, we have for C

1

> 0







�

K

ms

�

0

;�

0

(D

0;R

)� 1

�

1

[0;+1[

(D

0;R

)[G

T

℄

L







2

= C

1

Z

+1

0

�

�

�

K

ms

�

0

;�

0

(�)� 1

�

F

��

G

T

�

L

�

(�)

�

�

2

d�;

= C

1

Z

+1

0

�

�

�

�

K

ms

�

0

;�

0

�

�

B(T )

�

� 1

�

�

�

�

2

j�(�)j

2

d�:

Sin
e � � 0 and k[G

T

℄

L

k � kgk, then K

ms

�

0

;�

0

�

�

B(T )

�

� 1 ! 0 as T ! +1. By the Cau
hy-

S
hwartz inequality and the Lebesgue theorem, we obtain the limit (88). For the limit (89), we

have







K

ms

�

0

;�

0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L







2

= C

2

Z

0

�1

�

�

K

ms

�

0

;�

0

(�)F

��

G

T

�

L

�

(�)

�

�

2

d�; C

2

> 0;

= C

2

Z

0

�1

�

�

�

�

K

ms

�

0

;�

0

�

�

B(T )

�

�

�

�

�

2

j�(�)j

2

d�:

Sin
e � � 0 then K

ms

�

0

;�

0

�

�

B(T )

�

! 0 and we 
on
lude as above.

Lemma 4.3

For & < 0 (� = 0), we have for z 2 C n R










(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1










�

C

j=zj

2

; C > 0: (92)

Proof:

For f = (f

1

; f

2

; f

3

; f

4

) 2 L

2

R

and =z > 0 we have

�

(D

0;R

� z)

�1

f

�

(r

�

) = u(r

�

); r

�

2 R (93)

with

j = 1; 4 ) u

j

(r

�

) = �i

Z

+1

r

�

e

�iz(r

�

�y)

f

j

(y)dy; (94)

j = 2; 3 ) u

j

(r

�

) = �i

Z

r

�

�1

e

iz(r

�

�y)

f

j

(y)dy: (95)
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In the same time, we have also :

�

(D

0;[z(0);+1[

� z)

�1

f

�

(r

�

) = u

+

(r

�

); r

�

2 [z(0);+1[ (96)

with

u

+

1

(r

�

) = �i

Z

+1

r

�

e

�iz(r

�

�y)

f

1

(y)dy; u

+

4

(r

�

) = �i

Z

r

�

�1

e

�iz(r

�

�y)

f

4

(y)dy;

u

+

2

(r

�

) = �i

Z

r

�

z(0)

e

iz(r

�

�y)

f

2

(y)dy � ie

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

4

(y)dy;

u

+

3

(r

�

) = �i

Z

r

�

z(0)

e

iz(r

�

�y)

f

3

(y)dy + ie

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

1

(y)dy:

and

�

(D

0;℄�1;z(0)℄

� z)

�1

f

�

(r

�

) = u

�

(r

�

); r

�

2℄�1; z(0)℄ (97)

with

u

�

2

(r

�

) = �i

Z

r

�

�1

e

iz(r

�

�y)

f

2

(y)dy; u

+

3

(r

�

) = �i

Z

r

�

�1

e

iz(r

�

�y)

f

3

(y)dy;

u

�

1

(r

�

) = �i

Z

z(0)

r

�

e

�iz(r

�

�y)

f

1

(y)dy � ie

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

3

(y)dy;

u

�

4

(r

�

) = �i

Z

z(0)

r

�

e

�iz(r

�

�y)

f

4

(y)dy + ie

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

2

(y)dy:

Hen
e for =z > 0 and r

�

2 R, we obtain that

�

(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

f � (D

0;R

� z)

�1

f

�

(r

�

) =

�

u

�

+ u

+

�

(r

�

)� u(r

�

); (98)

where

�

u

�

+ u

+

�

(r

�

)� u(r

�

) =

0

B

B

B

B

B

B

B

B

B

B

B

�

�i1

℄�1;z(0)℄

(r

�

)e

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

3

(y)dy

�i1

[z(0);+1[

(r

�

)e

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

4

(y)dy

i1

[z(0);+1[

(r

�

)e

iz(r

�

�z(0))

Z

+1

z(0)

e

izy

f

1

(y)dy

i1

℄�1;z(0)℄

(r

�

)e

�iz(r

�

�z(0))

Z

z(0)

�1

e

�izy

f

2

(y)dy

1

C

C

C

C

C

C

C

C

C

C

C

A

: (99)

Moreover sin
e =z > 0, by the Cau
hy-S
hwartz inequality we dedu
e that

j = 1; 4)

�

�

�

�

�

Z

z(0)

�1

e

�izy

f

j

(y)dy

�

�

�

�

�

�

C

j

=z

kf

j

k; j = 2; 3)

�

�

�

�

�

Z

+1

z(0)

e

izy

f

j

(y)dy

�

�

�

�

�

�

C

j

=z

kf

j

k; (100)
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with C

j

> 0. Therefore, with (98) and (99) we obtain that for =z > 0










(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

� (D

0;R

� z)

�1










�

C

5

(=z)

2

; C

5

> 0: (101)

Obviously, we 
an prove the same estimate for =z < 0 in the same way. We remark that for

=z 6= 0










(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

� (D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1










(102)

=










(D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

&A

�

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1










�

C

6

(=z)

2

;

with C

6

> 0 and







(D

&A

�

;R

� z)

�1

� (D

0;R

� z)

�1







=







(D

&A

�

;R

� z)

�1

&A

�

(D

0;R

� z)

�1







�

C

7

(=z)

2

; C

7

> 0;

(103)

sin
e &A

�

is bounded and k(D�z)

�1

k � Cj=zj

�1

; C > 0 with D self-adjoint on L

2

R

. Therefore,

we obtain the result by using (101), (102), (103) and the following equality :

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1

= (D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

+ (D

0;℄�1;z(0)℄

�D

0;[z(0);+1[

� z)

�1

� (D

0;R

� z)

�1

+ (D

0;R

� z)

�1

� (D

&A

�

;R

� z)

�1

:

Lemma 4.4

For & < 0 (� = 0) and � 6= (2k + 1)�; k 2 R, the following operators are 
ompa
t in L

2

0

:

1

[0;+1[

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)� 1

[0;+1[

(D

&A

�

;R

) (104)

1

℄�1;0℄

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)� 1

℄�1;0℄

(D

&A

�

;R

) (105)

K

ms

1;�

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)�K

ms

1;�

(D

&A

�

;R

) (106)

Proof:

To prove the result, we use the Hel�er-Sj�ostrand formula : given f 2 C

1

(R) su
h that

�

�

�

�

k

s

f(s)

�

�

�

� C

k

< s >

�k

; k � 0; < s >:=

p

1 + s

2

; (107)

then there exists

e

f 2 C

1

(C ) with

e

f

j

R

= f and

�

�

�

�

�z

e

f(z)

�

�

�

� C

N

< <z >

�N�1

j=zj

N

; C

N

> 0; (108)

supp

e

f � fz; j=zj � C < <z >g (109)
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su
h that

f(x) =

i

2�

Z

C

�

�z

e

f(z)(x � z)

�1

dz ^ d�z: (110)

Following [2℄, we 
an prove for & < 0 (� = 0) and � 6= (2k + 1)�; k 2 R, that










D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

f










� &� kfk ; f 2 D(D

&A

�

;℄�1;z(0)℄

)�D(D

&A

�

;[z(0);+1[

):

Therefore, if we 
hoose � 2 C

1

(R) su
h that

&� � t =) �(t) = 1; 0 � t =) �(t) = 0;

we obtain that

1

[0;+1[

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

) = �(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

);

1

[0;+1[

(D

&A

�

;R

) = �(D

&A

�

;R

):

The fun
tion � satis�es property (107). By using formula (110) with the spe
tral theorem, we

have:

�(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

)� �(D

&A

�

;R

)

=

i

2�

Z

C

�

�z

e�(z)

h

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1

i

dz ^ d�z: (111)

A

ording to the estimate (108) with N = 2, to prove the 
ompa
tness of (104) it suÆ
es to


he
k that:










(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1










� Cj=zj

�2

; z 2� C n R;

to obtain the norm operator 
onvergen
e of (111), and the 
ompa
ity in L

2

R

of

(D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� z)

�1

� (D

&A

�

;R

� z)

�1

; z 2 C n R:

The �rst property is obvious by lemma 4.3 et the se
ond is satis�ed sin
e the previous operator

is of �nite rank. The result for (105) and (106) is obtained in the same way, sin
e for the last

operators the fun
tion K

ms

1;�

2 C

1

(R) satis�es property (107).

We de�ne V

1

thanks to V su
h that

V

1

:= ÆI

R

4 + &A

�

= lim

r

�

!+1

V (r

�

); Æ =

qQ

r

0

; & = �m

p

F (r

+

); (112)

where A

�

as in (68).

Lemma 4.5

Given

t

(0; g

2

; g

3

; 0) 2 C

1

0

(R)

4

and � � 0. Then

lim

T!+1

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)[G

T

℄

L

; [G

T

℄

L

>

L

2

0

= lim

T!+1

< (K

ms

�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

; (113)

lim

T!+1

< K

ms

1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< K

ms

�

0

;�

0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

; (114)
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Proof:

If & = 0 (� > 0), then we have 
learly

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)[G

T

℄

L

; [G

T

℄

L

>

L

2

0

=< (K

ms

�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

(115)

and

< K

ms

1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

=< K

ms

�

0

;�

0

(D

0;R

)1

℄�1;0℄

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

: (116)

Now, we treat the 
ase of & < 0 (� = 0) for the �rst limit. The proof for the se
ond is obtained

by the same way. By supposing that supp(g) � [0; R℄, R > 0 �xed, and T > �

1

2�

0

ln(�z(0)) +

1

2�

0

ln(C

�

0

) +

1

2

, we have supp

�

G

T

�

�℄z(0); 0[. Hen
e

1

[0;+1[

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

�

G

T

�

L

= 0� 1

[0;+1[

�

D

&A

�

;[z(0);+1[

�

�

G

T

�

L

; (117)

with

1

[Æ;+1[

�

D

V

1

;0

�

= 1

[0;+1[

�

D

&A

�

;0

�

= 1

[0;+1[

�

D

&A

�

;[z(0);+1[

�

(118)

and

K

ms

1;�

0

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

�

G

T

�

L

= 0�K

ms

1;�

0

�

D

&A

�

;[z(0);+1[

�

�

G

T

�

L

; (119)

with

K

ms

1;�

0

�

D

V

1

;0

�

= K

ms

�

0

;�

0

�

D

&A

�

;0

�

= K

ms

�

0

;�

0

�

D

&A

�

;[z(0);+1[

�

: (120)

From lemma 4.4, the following operator is 
ompa
t in L

2

R

:

K

ms

�

0

;�

0

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

1

[0;+1[

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

�K

ms

�

0

;�

0

�

D

&A

�

;R

�

1

[0;+1[

�

D

&A

�

;R

�

By lemma VI.6 in [2℄: [G

T

℄

L

* 0, T ! +1 in L

2

R

. Hen
e, we have the following limits:










0�K

ms

�

0

;�

0

�

D

&A

�

;[z(0);+1[

�

1

[0;+1[

�

D

&A

�

;[z(0);+1[

�

�

G

T

�

L

(121)

�K

ms

�

0

;�

0

�

D

&A

�

;R

�

1

[0;+1[

�

D

&A

�

;R

� �

G

T

�

L







! 0; T ! +1:

and

lim

T!+1

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)[G

T

℄

L

; [G

T

℄

L

>

L

2

0

= lim

T!+1

< (K

ms

�

0

;�

0

(D

&A

�

;R

)� 1)1

[0;+1[

(D

&A

�

;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

: (122)
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First, we remark that using the Fourier transform F :

F1

[0;+1[

�

D

&A

�

;R

�

=

"

1

2

+

1

2

p

�

2

+ &

2

�

i��

1

+ &A

�

�

#

F :

Moreover







K

ms

�

0

;�

0

(D

&A

�

;R

)1

[0;+1[

(D

&A

�

;R

)[G

T

℄

L

�K

ms

�

0

;�

0

(D

0;R

)1

[0;+1[

(D

0;R

)[G

T

℄

L







(123)

� C

1

Z

R

�

�

�

�

�

i�

j�j

�

1

�

1

p

�

2

+ &

2

�

i��

1

+ &A

�

�

�

�

�

�

�

2

�

�

F

��

G

T

�

L

�

(�)

�

�

2

d�; C

1

> 0;

+ C

2

Z

+1

0

�

�

K

ms

�

0

;�

0

(i��

1

+ &A

�

)�K

ms

�

0

;�

0

(i��

1

)

�

�

2

�

�

F

��

G

T

�

L

�

(�)

�

�

2

d�; C

2

> 0;

= C

1

Z

R

�

�

�

�

�

i�

j�j

�

1

�

1

p

�

2

+B

2

(T )&

2

�

i��

1

+B(T )&A

�

�

�

�

�

�

�

2

j�(�)j

2

d�;

+ C

2

Z

+1

0

�

�

�

�

K

ms

�

0

;�

0

�

i

�

B(T )

�

1

+ &A

�

�

�K

ms

�

0

;�

0

�

i

�

B(T )

�

1

�

�

�

�

�

2

j�(�)j

2

d�;

= I

1

+ I

2

(124)

By a tedious but straightforward 
al
ulations, we obtain that

K

ms

�

0

;�

0

�

i

�

B(T )

�

1

+ &A

�

�

�K

ms

�

0

;�

0

�

i

�

B(T )

�

1

�

�! 0; T �! +1; � � 0: (125)

Then, thanks to Lebesgue's theorem lim

T!+1

I

1

= lim

T!+1

I

2

= 0. We dedu
e that

lim

T!+1

< (K

ms

�

0

;�

0

(D

&A

�

;R

)� 1)1

[0;+1[

(D

&A

�

;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

= lim

T!+1

< (K

ms

�

0

;�

0

(D

0;R

)� 1)1

[0;+1[

(D

0;R

)[G

T

℄

L

; [G

T

℄

L

>

L

2

R

: (126)

whi
h entails the result.

Lemma 4.6

Given f 2 C

1

0

(R)

4

and

g(t) :=

�

W

�

0;R

f

�

(1� 2t); (127)

then










JU

V

(0; T )f � [G

T=2

℄

L










0

! 0; T ! +1; (128)

and

JU

V

(0; T )f * 0; T ! +1 in L

2

0

: (129)

Proof:

This result is a 
onsequen
e of lemmas 6.5, 6.7 and 6.9 of [14℄

With this previous lemma and sin
e all operators are uniformly bounded in L

2

0

norm and C

1

0

(R)

4

is dense in L

2

R

, we obtain easily:
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Lemma 4.7

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)[G

T=2

℄

L

; [G

T=2

℄

L

>

L

2

0

; (130)

lim

T!+1

< K

ms

1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< K

ms

1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)[G

T=2

℄

L

; [G

T=2

℄

L

>

L

2

0

; (131)

Lemma 4.8

The following operators are 
ompa
t in L

2

0

:

1

[Æ;+1[

(D

V;0

)� 1

[Æ;+1[

(D

V

1

;0

) (132)

1

℄�1;Æ℄

(D

V;0

)� 1

℄�1;Æ℄

(D

V

1

;0

) (133)

K

ms

1;�

(D

V;0

)�K

ms

1;�

(D

V

1

;0

) (134)

Proof:

From lemma III-10 in [2℄, we have the result for (132) and (133). For the last operator and as

for the proof of lemma 4.4, we use the Hel�er-Sj�ostrand formula. We must 
he
k that:

�

�

(D

V;0

� z)

�1

� (D

V

1

;0

� z)

�1

�

�

� Cj=zj

�2

; z 2 C n R (135)

and

(D

V;0

� z)

�1

� (D

V

1

;0

� z)

�1


ompa
t in L

2

0

for z 2 C n R:

For the se
ond property, we remark that

(D

V;0

� z)

�1

� (D

V

1

;0

� z)

�1

= (D

V;0

� z)

�1

(V

1

� V ) (D

V

1

;0

� z)

�1

for z 2 C n R: (136)

Moreover, lim

r

�

!+1

(V

1

(r

�

)� V (r

�

)) = 0 and (V

1

� V ) 2 C

0

(R). By the Sobolev embedding,

we obtain that 1

[z(0);n℄

(V

1

� V ) (D

V

1

;0

� z)

�1

is 
ompa
t in L

2

0

for all n 2 N and z 2 C nR . As

we have 
learly







1

[z(0);n℄

(V

1

� V ) (D

V

1

;0

� z)

�1

� (V

1

� V ) (D

V

1

;0

� z)

�1







0

! 0; n! +1;

we 
on
lude that (136) is 
ompa
t in L

2

0

. Finally, sin
e (V

1

� V ) 2 L

1

(R) and k(D � z)

�1

k �

Cj=zj

�1

; C > 0 with D self-adjoint on L

2

0

, by (136), estimate (135) is satis�ed.

Lemma 4.9

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1

< (K

ms

1;�

0

(D

V;0

)� 1)1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< (K

ms

1;�

0

(D

V

1

;0

)� 1)1

[Æ;+1[

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= 0;

(137)

lim

T!+1

< K

ms

1;�

0

(D

V;0

)1

℄�1;Æ℄

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= lim

T!+1

< K

ms

1;�

0

(D

V

1

;0

)1

℄�1;Æ℄

(D

V

1

;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

= 0: (138)
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Proof:

For K = K

ms

1;�

0

� 1 and 1

�

= 1

[Æ;+1[

or K = K

ms

1;�

0

and 1

�

= 1

℄�1;Æ℄

, we have:

K(D

V;0

)1

�

(D

V;0

) =K(D

V;0

)

�

1

�

(D

V;0

)� 1

�

(D

V

1

;0

)

�

+

�

K(D

V;0

)�K(D

V

1

;0

)

�

1

�

(D

V

1

;0

)

+K(D

V

1

;0

)1

�

(D

V

1

;0

):

We obtain the equality of the limits, by using the previous formula, lemma 4.8 and the property

(129). Finally, we 
on
lude the proof of this lemma thanks to lemmas 4.7, 4.5 and 4.2.

Lemma 4.10

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1







1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f







2

0

=< W

�

0;R

f; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

W

�

0;R

f >

L

2

R

; (139)

with

Æ =

qQ

r

0

:

Proof:

See lemma 6.10 in [14℄.

Proposition 4.3

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1

< K

ms

1;�

0

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

=< K

ms

1;�

(D

0;R

)W

�

0;R

f;W

�

0;R

f >

L

2

R

; (140)

with

� =

2�

�

0

:

Proof:

By a straightforward 
al
ulation, we have

< K

ms

1;�

0

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

=< K

ms

1;�

0

(D

V;0

)1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

; Æ :=

qQ

r

0

+ < K

ms

1;�

0

(D

V;0

)1

℄�1;Æ℄

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

=<

�

K
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1;�

0

(D

V;0

)� 1

�

1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

;

+







1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f







2

0

;

+ < K

ms

1;�

0

(D

V;0

)1

℄�1;Æ℄

(D

V;0

)JU

V

(0; T )f;JU

V

(0; T )f >

L

2

0

The �rst and the third term are treated by lemma 4.9 and the se
ond term by lemma 4.10.

Proposition 4.4

Given f 2 L

2

R

, then for � � 0 :

lim

T!+1

< K

ms

1;�

0

(D

V;0

)U

V

(0; T )f; U

V

(0; T )f >

L

2

0

=< K
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0

(D

V;0

)W

�

V;[z(0);+1[

f;W

�
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L

2

0

+ < K

ms

1;�

(D

0;R

)W

�

0;R

f;W

�

0;R

f >

L

2

R

; (141)
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with

� =

2�

�

0

:

Proof:

With a simple 
al
ulation, we obtain that

< K

ms

1;�

0
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V;0
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V

(0; T )f; U

V

(0; T )f >

L

2
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V
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L

2

0

+ < K
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)(1� J )U

V

(0; T )f; (1 � J )U

V

(0; T )f >

L

2

0

+ 2< < 1

[Æ;+1[

(D
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)(1� J )U

V

(0; T )f;1
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(D
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)JU

V

(0; T )f >

L

2

0

:

The last term vanishes as T ! +1 thanks to limit (129) and lemma 4.1. By lemmas 4.10 and

4.1, we 
on
lude that the two �rst terms are zero as T ! +1.

Proof of theorem 4.1 :

By lemma 4.1, the wave operatorW

�

V

l;�

;[z(0);+1[

exists and is an isometry from L

2

R

onto P

a


(D

V;[z(0);+1[

)L

2

0

.

Hen
e by using the operators (65), (63), we dedu
e that

W

�

+

:=

M

(l;n)2I

E

�

ln

W

�

V

l;�

;[z(0);+1[

R

�

ln

; � � 0 (142)

exists and is an isometry from L

2

BH

onto P

a


(D

0

)L

2

0

. By de�nition, we have




�

�;!

:=

�

W

�

�;!

�

�

; � � 0:

A

ording to the 
hain rule theorem, the following wave operator

W

�

�;D

:= 


�

�;!

�

W

�

+

�

�

: P

a


(D

0

)L

2

0

! L

2

�;!

; � � 0: (143)

is an isometry from P

a


(D

0

)L

2

0

onto L

2

�;!

. With the help of Lebesgue theorem, proposition 4.4,

the properties of the operators (65), (63) and the properties (62), (66) and (74), we obtain the

following limit:
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H
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From the de�nition ofW

�

�;D

andW

�

+

, and the intertwining properties, we dedu
e that for � � 0

S

1
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:

We de�ne
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W
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�
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and remark that
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Hen
e, with (62) and (82), we have
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:

Therefore, we obtain limit (55).

4.3 Proof of theorem 3.1

By the identity of polarization, it is suÆ
ient to evaluate for � 2 C

1

0

(M


oll

)

4

the following limit:
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Sin
e for T > 0 large enough, we have:
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Therefore, thanks to limit (144) of theorem 4.1, we dedu
e that for � � 0 :
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