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1 Introduction.

In this paper, we investigate the Hawking effect [14] in the case of the Dirac quantum field. We adopt
the semi-classical approximation by supposing that the space-time curvature influences the fields, but the
back-reaction on the metric is neglected. Then, we prove the emergence of a thermal state at the last
moments of a gravitational collapse which is interpreted by a static observer at infinity as an outgoing flux
of particles and anti-particles. Moreover, the black-hole preferentially emits massive spin 1/2 particles
whose charge is of same sign as its own charge.

The Hawking effect and more generally the quantum effects in the vicinity of a black-hole have been
the subject of numerous studies, we mention only the works that we have used: [5], [11], [25], [26].

A first mathematical study of the Hawking radiation was undertaken by J. Dimock and B. S. Kay
[10]. In this work the authors consider the case of a Schwarzschild black hole for a Klein-Gordon field.
By quantizing suitably this field in the vicinity of the past horizon of the black hole, the authors show
that an observer located at infinity future observes the Hawking radiation. The case that was initially
considered by S. Hawking of gravitational collapse in the Fock vacuum was examined by A. Bachelot. In
a first time and for a field of Klein-Gordon [1], the author showed that a plunging observer in the future
Schwarzschild black hole observes the Hawking radiation when he crosses the horizon of the black hole.
In a second paper and for the same field, A. Bachelot obtained the proof of the Hawking effect [3]: a
fixed observer in Schwarzschild variables observes at last moments of collapse in his own proper time,
an outgoing Hawking thermal flux coming from the horizon of the future Schwarzschild black hole. In
[4], this same author extends his study [1] to the case of charged Dirac field for a plunging observer in a
charged black hole resulting from a gravitational collapse.

Just like that was done for the field of Klein-Gordon in [3], our contribution to this program of
study is to prove the Hawking effect for charged Dirac field of the point of view of a fixed observer in
Schwarzschild variables for a collapsing charged star. More precisely, in this work (and as for those of A.
Bachelot) we consider a very simplified model of gravitational collapse, for which the star is modelled by
a reflecting sphere: the properties of the star surface are given by the boundary condition for the Dirac
field on this surface. Here, we chose the MIT bag boundary condition [6] which is conservative and
which causes a reflexion of the fields on the star surface like occurs for a bosonic field by using a Dirichlet
condition. These simplifying assumptions enable us to avoid difficult studies of the interactions between
the fields and the fluid which composes star and of the behavior of this fluid at the time of gravitational
collapse via the Einstein-Maxwell equations. Moreover, we suppose that the spherical symmetry of the



charged star is preserved during the collapse, hence, outside this one and by the Birkhoff theorem, the
DeSitter-Reissner-Nordstrgm or the Reissner-Nordstrgm spaces time are relevants. The gravitational
collapse occurs in the Fock vacuum. Although this last assumption is not physically correct in the case of
DeSitter-Reissner-Nordstrgm space time (see [13]), the mathematical proof remains valid. Indeed, in this
case, it would be preferable to consider a thermal state whose temperature is that of Gibbons-Hawking
associated to the cosmological horizon. A forthcoming work will be to study the Hawking effect for Dirac
field in (DeSitter-)Reissner-Nordstrgm space time by considering the gravitational collapse in a thermal
bath of arbitrary temperature.

This article is organized as follows: In the second part, we define the geometrical framework for a
charged collapsing star described by the globally hyperbolic manifold (M.., g). This collapse creates the
(DeSitter-)Reissner-Nordstrgm space-time (M,,, g) produced by a charged black-hole. In the third part,
we define the Dirac equation for massive charged spin 1/2 field on (M..,g) with MIT bag boundary
conditions on the star surface. The mixed problem is well-posed. In the fourth part, we study the
scattering theory for the massive charged Dirac field in the charged eternal black-hole (M,,,g). To
do this, we introduce the useful wave operators at the horizon and at infinity. More particularly, we
extend the studies of [16], [21] and [18, 19], in proving the asymptotic completeness for the classical
wave operators at the horizon and infinity when we consider the curved DeSitter-Reissner-Nordstrgm
space-time. In the fifth part, we construct the local algebra of observable $(M.,,) as in [8] and [9], using
the Dirac-Fermi Fock representation on some particular Cauchy hyper-surface. We define the KMS-state
involving the (Hawking) temperature and the chemical potential. In this same section we state the main
theorem of this work using the mathematical objects of the previous part. We interpret the result as a
thermal state given by a KMS-state which is independent on the behavior of the collapse and boundary
condition on the star for the Dirac field. The last section is devoted to the proofs of the technical results
useful to demonstrate the main theorem of this article.

2 Geometrical description of a gravitational collapse.

We introduce the general geometrical framework describing the creation of a black-hole by an idealized
star collapsing. First, we consider the (DeSitter-)Reissner-Nordstrgm space-time outside a charged, static
eternal black-hole in an expanding universe, as the globally hyperbolic manifold (M., g),

My, = ]RtX]rg,m[xSf,, 0< 7y <ry <+o0,
Japdzdaz® = F(r)dt* — F~(r)dr? — r’dw?, (1)
dw? = db* + sin*0dy?, w = (0,¢) € [0,7] x [0,27],

Here, @ € R, M > 0, A > 0, rp and r4 are respectively the electric charge, the mass, the cosmological
constant, the radius of the horizon of the black-hole and the radius of the cosmological horizon. We have

F(rg) =F(ry) =0, 2Ko= Fl(ro) >0, 2kq= Fl(m_) <0, r €]rg,r4[= F(r) > 0.

with ko, k4 the surface gravity at the black hole horizon and at the cosmological horizon. If A = 0 then

0<[Q <M,
ro=M+/M?-Q? ri=+o0,

and the globally hyperbolic manifold (M,,,g) describes the Reissner-Nordstrgm space-time which is
asymptotically flat at spatial infinity. We introduce a radial coordinate r,, which straightens the radial



null geodesics:

r*zi{ln(r—ro)—/r:< L —2L0)>da:}+c, r€lro,ral, c€R @)

2K r—ry F(z

dr. _
dr =F ®)

This coordinate shifts the horizon of the black-hole to the negative infinity and the cosmological horizon
to the positive infinity.

As we consider a black-hole created by the collapse of spherical charged star, if the exact spherical
symmetry of the star in collapsing is maintained, outside of it, the (DeSitter-)Reissner-Nordstrgm geom-
etry is relevant thanks to Birkoft’s theorem [15], [20]. Hence the space-time outside the spherical charged
star with r,-radius z(t), ¢ € R, is the manifold (M., g) such that :

Moy == {(t,r*,w) ER xR,, xS2, 7r,> z(t)} , (4)
= Urer ({t}x]z(t), +o0[,. xS2) .

Following the general geometrical discussion about the same problem in [2] and [4], the reasonable as-
sumptions of generic collapse lead to the following properties for z(t):

2€C*R); VteR, —1< 3(t) <0, (5)
2(t) = —t — Croe 2 4 w(t), Cuy >0, |w(t)| + | (t)] = O (e7*), t — +o0. (6)

We suppose the star stationary in the past. Moreover, we arbitrarily choose ¢ in (2), such that for all
t <0,
z(t) = 2(0) < 0.

If we consider ray of light leaving z¢ at t = 0, with 2(0) < zp < 0, then 7(z) is the time where the ray
is reflected by the surface of the star,

S:= J{t,2(1)} x 53,
teR
such that 7(x) is the unique solution of
z2(7(x0)) + T(x0) = - (7)

Thanks to the property (6), we have also (see [1]):

1 1 )
T(z0) = ~omo In(—zg) + P In(Cy,) + O(z0), z0 >0, Cy >0, (8)
1+ 2(7(20)) = —2K0z0 + O(z3), 0 — 0. (9)

3 The Dirac equation.

For the spin 1/2 particles with real charge ¢ and mass m > 0, the Dirac equation on (M., g), has the
general form (see and [4] and [22])

-0 -1 ! - 92 - 3
iy .qQ iy F F iy 1 iy
— O +i— — O, + =+ — — | O + = cot.f ——0,—m| ¥ =0 10
\/F<t+lr>+\/F<*+r+4>+r<0+2co torsinge T (10)
where the Dirac matrices v*, satisfy
,Ya,yb + ,Yb,ya = 2nabIR47 a, b= 07 o 37 77ab = Dlag(la _]-7 _]-7 _1) (11)
o_ . 0 o° k- 0 ok .
Y _Z< _0.0 0 ’ 7=t o_lc 0 k_172737 (12)



with the Pauli matrices,

o (10 1 (1 0 > (0 1 3.0 -1
0-(01,0—0_1,0—10,0—210. (13)

On the star surface, we put the following boundary condition, written for (¢,r.,w) € S, as
n; v W (t,re,w) = BY (14)

where n; is the outgoing normal of subset of R, x R,, X .S? and B some operator local in time, rotationally
invariant and which conserves the L? norm. We choose B such that (14) forms a family indexed by a
parameter v of non equivalent boundary conditions: the generalized MIT boundary condition (see [6]),
BY, . defined by

Bl = e Wt 1, w), 7= —inyly?y? = diag(1,1,-1,-1) (15)

where the parameter v is the chiral angle. We suppose that v € R if m > 0 with r; < +o00, and
v# Q2k+ 1), k€ Zif m >0 with r; = +00. We introduce the Hilbert spaces:

L? := L*(z(t), + o0y, xS, r2F2(r)dr.dw)*, L2, := L*(R., x S2, r2F'2(r)dr.dw)®.  (16)

The norms of these spaces are denoted by ||.||; and ||.||. Moreover for & € L7,
— — ‘I>(r*,w) T+ E]Z(t)a_'_oo[r*
ol = el (@) = { ) T Al

Hence, respectively, on (M., g) and on (M,,, g), we consider the hyperbolic mixed problems:

at‘:[l = iDt\IJ, Z(t) < T, (17)
0 —+! .
ﬁ\Il(t,z(t)) = ie™"W(t, 2(t)) (18)
U(t=s,)=V,()€cL? (19)
and
¥ =iDy, U (20)
U(t=0,.)=Psu (.)€ Lzﬂa (21)

with, D; defined on L} and Dy defined on L2, such that:

! 2 3
D, D, = —g +1! (6” + F(r) + F—(r)> +/F(r) (%(89 + 1cot¢9) + rslz—nea“’ +F4> . (22)

T 4 2
I'':=iy%y! =iDiag(~1,1,1,—1), T?:=iy"? T?:=i"% T*':=-m", (23)
D(D,) = {\IJ €L? DVeLs M\If(z(t) w) = i U (2(t), w) } (24)
t to t i m ) )
and
D(Dyy) ={¥ € L., DyyV € L2, }. (25)

Proposition III.2 in [4] gives the solution ¥(t) of the hyperbolic problem (17), (18) and (19) expressed
with the propagator U(t, s):



Proposition 3.1
Given U, € D(D,), there exists [¥(.)], = [U(.,s)¥,], € C*(R;,L2,) solution of (17), (18) and (19)
such that, for allt € R
U(t) € D(Ds).

Moreover,
@) = [[¥slls

and U(t,s) can be extended in an isometric strongly continuous propagator from L§ onto Lf.
For the eternal black-hole, we have (see theorem 4.1 in [17]):

Proposition 3.2
D,y is a densely defined self-adjoint operator on L2, hence the Cauchy problem (20) (21) has a unique
solution ¥ € CO(R,, L2.), given by the strongly continuous unitary group U (t) := e®tPsa:

V() =U) ¥, U(0)=Vos, [ =¥zl

4 Scattering by an eternal black-hole

Since the Hawking effect arises from an asymptotic study of the fields, we define the wave operators for
the eternal charged black-hole. Near the black-hole horizon (resp. near the cosmological horizon when
A #0), we compare the solution of (20) on L2 with the solution of

oV, =iD_V_ (resp. o¥, =D, \IIH)

where

D_ :=T%,, — ﬂ <resp. D, = o, — —)

To

is self-adjoint on
L? := L*(R,, x SZ; dr.dw)*, (resp. L} =L, A>0),
with the dense domain
D(D_)=H'(R,.;L*(S3))* (resp. D(D, _,) = H'(R..; L*(S3))") -
Thanks to the form of I'!, we define the subspaces of outgoing and incoming waves L?_"' and Li_ such
that L? = L’ & L?,
LT :={VeL? ¥,=U3=0}, L’ :={VeL’ ¥ =¥, =0}, (26)
L} =L oLy, LM =L L7 :=L".
We introduce for the two asymptotic regions, respectively the identifying operator between Li and L;ZBH
and the one between LAQ)_) and L2 :
T 0 (r,w) = xe (r)r T ETYAROE (r, w), OF € Lii,
Gt W (e, w) o X (r)r P00 (), T € L2,

where x. and x_, are cut-off functions,

1 re<a

X ECT(R,,), Ja,beR 0<a<b<1 x%(r*)z{o rosp 0 X0 = loxe (27)



If A > 0, we define the wave operators W(i_ at the black-hole horizon and Wf_) at the cosmological
horizon, by

WE ot = Jim U(=)7_ P vt i L2, vte L (28)
W UF = Jim U(-0)7, Prow¥ in L, UFeL’F. (29)

When A = 0, the space-time is asymptotically flat at the infinity. Hence, we compare the solutions of (17)
on LgH with the solution ¥_, of the Dirac equation on Minkowski space-time with spherical coordinates
(p,w) € RF x [0,7] x [0, 2x[, putting 7. = p > 0 to avoid artificial long-range interactions :

8V, =iD, U,

where

1 r2 1 r3
D =T S = cot0) + r
(N <8p+p> + 5 (80+2c0 )+ psin98¢+ ,

is self-adjoint on

2 _ r2(mt+
L} =L*R

5 X S2: p*dpdw)*

with the dense domain

D(D,_ ) =H"(R x52; p*dpdw)*.
We define the Dirac operator with Cartesian coordinates D,  on L*(R3)*, with the help of the isometry
T between L?(R3)* and LO%_), such that :

™

T:¥(x) = V(pw)=TY(z), T= 51 =37 (5% )1
TD, . T '=D,, =ap+mpB, a=i(l",I*,I*), B=-7° p=—iV.

The previous comparison involves long-range perturbations due to the mass and the charge. Then, as in
[17] and [19], we construct the Dollard-modified propagator U, _, (t) :

Uo,—‘ (t) = T’Uz(t)Til, U(t) — e it)\(p) iX+(t)P2 + efit)\(p)eiX_(t)PE7 (30)
X*(t) = 2m?y 280 olosW) oy BB T mE, ) = p/AD),

woe )
log(t) := tlt| *Int], PY:=1/2(1F D, ., /A(@)).

We define the bounded identifying operator J, , between LOQ_) and L2, :

_ [ xslp=r)r P B (p=raw) 1 >0 >
(G W) () = { X rIN vwer?,
and in the case of A = 0 the wave operator Wf_} at infinity, for all ¥ € LOQ‘_)
W ¥ = lim U-t)7_ U, (0¥ in Ly, (31)

Then, we state the theorem which is proved in the last part of this work:

Theorem 4.1
The operators W Wi and Wi , respectively on L2i L2i and L ezist and are independent of
X, X— and x_s satzsfymg (114). Moreover

IWETH| = |05 2, VEF € L2, (A>0, m>0),
W= OF| = [0z, VEFe L, (A>0, m>0),
”Woi ¥ = H\II”LOZ'_‘: LA S LOQ‘_,, (A=0, m>0),



and

Ran (Wﬁ oWE ) L%, (A>0).

5 Dirac Quantum Field and Hawking effect

5.1 Second quantization of the Dirac fields

We define the framework of the Quantum Field Theory to describe the Hawking effect. We use the
approach of the algebras of local observables on curved space-time introduced by J. Dimock in [8] and [9].
First, we define the Fermi-Dirac Fock space which describes the state with an arbitrary number of non
interacting charged fermions. Given, ($),< .,. >g) a complex Hilbert space and Y the charge conjugation
(see [24] section 1.4.6), then we split §) into two orthogonal spectral subspaces

37) = g)+ ® g)—: g)+ = P“ry): 57)— = P—g)a (32)

where, P, and P_ are the spectral projectors on positive and negative subspaces. We define, S(l)(ﬁ+)
and 3(1)(36_), respectively the one particle space and the one anti-particle space such that

§V (90 =94, §V(OH)=TH_. (33)

To treat various numbers of particles and anti-particles, we recall the definition of the Fermi-Dirac Fock
space:

+oo

§) = P 3™, Fmm(9) =57 (91) 23 (H ), (34)
n,m=0
where
§994):=C §09)=C F(H) = /\ S, 3™ )= AT (35)

An element 1 of F(£) consists of sequence ¢ = (™), .oy, with (™) € Fm) (). The vacuum
vector is the vector Q... € §() satisfying

(n,m) = (0,0) = Q%0 =1 (n,m) # (0,0) = Q"™ =0, (36)

vac

We define the quantized Dirac field operator ¥ and its adjoint ¥*:

fen—¥(f):=a(Prf) +b"(TP_f) € L(9),
fe9— ¥ (f) :=a" (Prf) +b(YP_f € L(9),

where a(Pyf), a* (P f), b(P_f), b*(P_f) are respectively the particle annihilation, creation operators
and the anti-particle annihilation, creation operators. The quantized Dirac field is an anti-linear and
bounded operator and, thanks to the classical properties of the creations and annihilations operators, it
satisfies the canonical anti-commutation relations (CAR). We consider the C*-algebra () generated by
the field operators ¥*(f)¥(g), with f,g € $. For an observable A € {(9), we define the vacuum state
as Wy, (A) =< AQ,,., Q... >¢. Then, by straightforward computation and for f,g € ), we have

Weo (B (F)¥(9)) =< P-f,9 >5 . (37)



Given a Dirac-type equation, with Hamiltonian H, satisfied by the one particle field fp:
Oifp = iHfp,

we choose the spectral projectors Py and P_ such that

P+ = 1]_0070] (H), P_ = 1[074_00[(]1{[) (38)
On $4($), we also introduce the KMS state wiﬁs depending on ¢ > 0 and § € R, such that for f,g € $:
Wl (T (N)T(9) =< pe” (1 + pe”™) 7 f,9 >5, pi=e”. (39)

The restriction of this KMS state to the sub-algebra $($4) (resp. $($H_)) of U($), corresponds to the
Gibbs equilibrium state describing the thermodynamic models for noninteracting Fermi particles (resp.
anti-particles) with temperature c~! > 0 and chemical potential § (resp. —§).

As J. Dimock [9], we construct the algebra of local observables in the space-time outside the collapsing
star, with the help of a given CAR representation on a Cauchy hyper-surface. In fact this construction
does not depend on the choice of the CAR representation, the spin structure and the hyper-surface.
Then, in particular, we consider the Fermi-Dirac Fock representation and the following foliation of the
globally hyperbolic manifold:

Mo = e, T = {t}x]2(t), +o0[,, xS2.
teR

We consider IIj, and we put
9 := L*()2(0), +00[x S%, P2 F/?(r)dr.dw)* = L%, H:= D, (40)

Using the previous definition of Dirac quantum field, we define on Lg the quantized Dirac field ¥, and
$U($)) the C*-algebra generated by ¥4 (®1)¥o(®s), with &1, P> € §. We introduce the following operator

St ® € C (M)t > S = / U0, 1) (t)dt € L, (41)
R

where U (0,t) is the propagator defined in proposition 3.1. Then, we define the local quantum field in
M .. by the operator:

¥ ..:®c Cé’o (Mcoll)4 — ‘I’cou(q)) = ‘I’O(Scouq)); (42)

and, for any open set O C M., we introduce $(O) the C*-algebra generated by ¥ ($1)¥.,,(®2),
supp(®;) C O, j = 1,2. Finally, we have:

U(Mon) = adh (U u(0)> .

o

Then, thanks to (37), (38) and (40), we define on U(M...) a ground state w,,  as following:
choll (Q:oll((}l)wcoll((}Z)) = wvac(q’s(Scouq>1)‘1’0(5couq>2)); ‘I>1; e Hn (43)
=< 1[0,+oo[(D0)Scouq>1;Scollq>2 >¢

We describe the quantum field at the horizon of future back-hole. We consider the stationary space-time
M, with the associated Dirac Hamiltonian D_ for the one particle field. Using the Fermi-Dirac Fock
quantization on R,, x S2, we define the field ¥ (®) with ® € L?_, and the operator S_ such that

S @ eCEMy) — 5= / e P @ (t)dt. (44)
R



We also introduce

U DcCOPMy)—¥_ (D) :="_(S_0), (45)

— —

and the C*-algebra $f.(M,,) generated by ¥_ (;)¥" (¥,), &1, P, € L. Using (39), we consider the
Hawking thermal state:

Wl (BT (1) (D)) = wipf (T (S @1)T_(S_ D)), P1, P2 € C5° (M) (46)
=< uea'D<_ (1+uea'D<_ )—15(_ q)la‘S:— b, >r2, (47)

with
p=e’° 6e€R o>0. (48)

Now, we describe the quantum field at the spatial infinity of the future black-hole. According to A which
is respectively positive or zero (cosmological horizon or asymptotically flat space-time), we consider the
stationary space-times M, or M., := Ry x ]Rij* X 53, with the Dirac Hamiltonian associated to a one
particle field D,  and D, _ . As above, using the Fermi-Dirac Fock quantization on R, x S2 or Rf x.S2,
we define the fields ¥, | (®1) with ®; € LA2)_) or ¥ . (®1) with ®; € L02‘_) and the operators S, , or §,
characterized by:

S, 1 ®ECTM,) — S, P = / e "Prn (t)dt, A >0, (49)
R

S B € CF (M) S, 8= [ U, (080, (50)
R

where U, , is the Dollard-modified propagator given by formula (30). Then, we construct the C*-
algebras 4_, (M,,) and U_,(M,,,), respectively generated by \IIA*)_) (®1)¥, _ (®1) with &;, &, € LAZ)_)
and ¥ (®1)¥, , (®;) with &;,®, € L”_, where

e

¥, PeCPMu)'— ¥, _ (®):=%, (5 _®), A>0, (51)
‘I’o,—; 1@ € Cgo(Mflat)4 — ‘I’o,—; (CI)) = ‘I’o,+ (‘S:),—» CI)) (52)

With (37), the vacuum states on each algebras 4, (M,,) and U_,(Ma,,) are given by

Weae (BT (D1)F, _, (®1)) =< PAS, | ®1,5, | ©, >pz . A>0, (53)
8,8, € CF (M), P i=1p.((D, ), (54)
Woae (B (®1)W, (1)) =< P°S,_ @1, & >p2 (55)
@, € C°(Man), P2 i=15.((D, ). (56)

Since we are interested in the state of the quantum field at the last moment of gravitational collapse, we
investigate the following limit:
Q):oll

lim w ((}{)Wcoll(¢g’))7

T3 0o Meoll (

where
oL (t,r,w) = ®;(t — T,ry,w), P € C° (M), j=1,2,

and, w,, and ¥, are defined by (43) and (42). Then, we state the main theorem of this work



Theorem 5.1 (Main result)
Given ®; € C°(M.,)%, j=1,2, then we have for A > 0,
lim w,,  (0(21).u(23)) = Wil (T (2T (2_22))

u Haw
T—+oco o

+ w(\Il:_‘ (Q | @), (2  P3)),

A, A,— A, —
with
1 2
THuw:_:_ﬂ- 6:—qQ

g I<607 To '

Proof of theorem 5.1 :
For ® € C§°(M..,)%, by the identity of polarization, it is sufficient to evaluate

. * T T\\ _ : T2
TLHEOO Wt (\I’cou(q) )\I’coll(q) )) - TLHEOO ||1[07+Oo[(D0) Sean® | 0’
. 2
= Jim_|[1040c(Do) U0, T)S2]5, (57)
because for 7' > 0 large enough, we have:
S..®l =U(0,T7)S,,®, S..®:= / U(—t)®(t)dt.
R
Then, we use the key theorem that we prove in the next section:
Theorem 5.2
Given f € L2, if A > 0, then
. 2 _ 2
Am 10, 4.00(Do) UO.7) g = |10, 0er(Ds 2207 1] v
+ < Qf,pe"Pe (L4 peP )T Q> (58)
with
o qQ 2 _ o\ k _ _ * _ _ *
p=et, 5=L2 o= 0z = (WD), ol =(W), 9. :=(W_.),
To Ko

where W, W, W are the wave operators respectively defined in (28), (29) and (31).

A= 0,

According to (57) and the previous theorem, for A > 0, we deduce that :

TI_IH_IOO “Mean

2
(2 (@) Een(@1) = LoD, )RT Su2[
A, —
4 < Q:_Sbhq)all'ea'D(_ (1 + ueo‘D(_ )—1 Q;SthI) >L(2_

= H]‘[OH’OO[(DA,—) )SA,—> Q;_; q)‘

2
Lf‘_"
+<S_ QT @, pePe (14 pe"P- ) S QL@ >p
=Wl (T (Q_2))¥_ (2 P))
+w.. (T (27 2)F, (2 2)).

A, A,—

10



5.2 Discussion

The interpretation of the previous theorem in terms of particles is more difficult. Indeed, there are as
many definitions of particles as types of observators. In the Minkowski space time and thanks to the
Lorentz transformations, we naturally define the particles linked to the inertial observators. For the
general curved space-times, we have not the similar transformations and the notion of particles is rather
vague. In Theorem 5.1, the state w,, (@ (@1)¥ (@) gives informations at the time T of a detector
fixed with the respect to the variables (r.,w) measuring the fluctuation of the quantum field outside the
collapsing star. The detector is put in the Boulware vacuum that corresponds to the classical concept of
vacuum state for a static observer. This last theorem gives the response of the detector at their own infinite
proper time (T" = +00), which corresponds to the last moments of gravitational collapse. On the hand,

the term w,..(¥; | (2, 1)¥, _ (Q ®2)) proves that the dectector measures merely a vacuum coming

from the past infinity and falling into the black hole. On the other hand, wggN(\Il: (Q_21)¥_(Q_D,))
corresponds to the emergence of a thermal state at temperature 7i,, coming from the vicinity of the
black hole. An observer at rest with respect to coordinates (r.,w) will interpret as ¢ — +oo this thermal
state like a flux of fermionic and anti-fermionics particles leaving the future black hole. The result is
independent of the history of the collapse and the boundary condition on the star surface. Indeed, we
can easily prove the same theorem putting the more general MIT Bag boundary condition (see [4]):

. ; 5
B:=1 E e P,

(In)ez

where P, is the orthogonal L?(S2)-projector on Vect(Y;,), (see (68)) and v, a sequence which satisfies
the same conditions as v in the third section about the MIT Bag boundary condition. Moreover, for a
Lebesgue measurable subset B of R, x S2 with 0 < |B| < 400, lemma A.2 in [4] gives respectively the
expression of the density of particles D+( KMS) of antiparticles D (wf{ﬁs) and the charge density ppa.
for the gas of fermions create at the vicinity of the black-hole horizon in the subset B:

j 1 gl
Dh(whe ) := B~ 1ZWKMS (PF®))a(PF &%) = Eln(1+e ), (59)
—&J 1 —0od
Dg(we ) :=B~ 1ZWKMS (PZ®7)a(PZ®7)) = E1n(1+e ), (60)
Pi = 1]70070]( — )7 P; = 1[0,+oo[(D<_ )7 (61)
. D+ D= L 2Q 62
Praw = ( ( KMS) + ( KMS)) ; 71'7"0 ( )

where (®7);cy is an orthonormal basis of {S_ Q_® € L2, : (r.,w) ¢ B= S_Q_®(r.,w) = 0}. Since
Paw and @ have the same sign, we conclude that the black-hole preferentially emits charged particles
with the same sign as its own charge.

We emphasize that the interpretation of theorem 5.1 is valid only in semiclassical regime. Indeed,
we suppose that the black hole that we consider has a sufficiently large mass in order to be able to use
the classical theory of General Relativity to model the gravitational field but also to neglect the back
reaction of the quantum fields. Thanks to theorem 5.1, we can conjecture that the black hole loses its
charge and its mass. Therefore, if we want to study this evaporation, we can not neglect the back reaction
of the Hawking effect. But for that, it would be necessary to study a non linear problem of a very great
complexity.

6 Proofs of the main theorems.

This section is organized as follow: in the first subpart, thanks to the spherical symmetry property of the
geometrical framework, we reduce (17) and (20) to a family of one dimensional problems. This reduction
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will be useful for the next subparts. In the second part, we prove theorem 4.1 on the scattering theory
in the eternal charged black-hole. In the third part, we demonstrate theorem 5.2 on the sharp estimate
of 1[0,+oo[(D0)U(07 T)

6.1 Reduction to a one dimensional problem.

To reduce problems (17) and (20), we use spin-weighted harmonics Y, = (see [12], [17]). The families
3

{Yé,n; (l,n)EI}, {Yi%,n; (l,n)EI}, 7= {(l,n): l—%eN, l—|n|€N},

form a Hilbert basis of L?(S2) and each Y

sn?

s = £1/2 satisfies the recurrence relations,

. n—scosf_, | =i /UEs)UFs+ )Y, (W), £1>—s.
89}/37;(0‘)) + sin 6 Ksn(w) - ‘ 0, [ = Fs. ’ (63)
D,V () = —in¥l, (w) (64)

We introduce the Hilbert spaces to treat the one dimensional problem respectively outside, the charged
collapsing star and the eternal black hole:

0<t, Lf=L2(2(t), +00fn,, dra)', L= LR, dr.)", L= L*(Re., rF2(r)dra)t (65)
The norm of L? and L% are respectively denoted by ||.||; and ||.||. Moreover for ® € L*(B, dr.)*, B C R,

d(r,) r.€B
#1205, are = 801 [0l o= { 30 7€

In the same way, we define
0<t, H}:={®elL} 0. ®€cL}}, Hp:={®ecli 0, ®€cLi},
and moreover for ® € H} we have,

1 — @(T*) Tx G]Z(t)a +OO|:’I‘*
[®]n € Hg, [®]u(rs) = { Dot —12) o € B\Jo(D), 4o,

Hence, for 0 < ¢ < 400, and putting
P W LYY (66)

any ¥ € L? or L2, where ¥, € P,.L? or P,.L? can be written in the following way:

U(r,,w)= Z Ui (re) @4 Yip(w), (67)
(I,n)eT

— 4
v @4 u = (U1v1, UgV2, U3V3, Ugvs), Vu,v € C7,

Vi = (V!4 V], Y0001, (68)
We define,
R U e L 5PN, € L2, (69)
B Qe L2, — U, € P.LE (70)
€ Wy, € L2 s e 57 Py, @, Vi, € L2, (71)
BH gy, € PoLE e Uy, 04 Y, € L2 (72)
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to express L? and L2, as a direct sum:

@ gilan, L]23H: @ BHL2 @ glnLR' (73)

(I,n)eT (I,n)ex (I,n)eT

With (63), (64) and s = £1/2, we obtain

D enDu,.x, - L2, (74)
(el To

Dy, =T, + Vi, =qQ <— - —) VF(r (mA +- r2 (I + 1/2)) (75)
A, = ( a?y ‘6” ) . ay = diag(ie”, ie! zi (76)

'D(Dvlth) = {\IJ c L?, DVz,wt‘II c L2
Z(t)Ws(z(t) = Wa(2(t), W1(2(t) = —Z(t)¥3(2(t))} (77)

and
Duon= P &Dou Ry, Dy =T <am Fir) (r)> + Vo (78)
(I,n)eT r

Veu = —? —VF(r) < 2 +1/2) — ) , (79)
D(Dpy ) ={¥ € LZ;; Duuy ¥ € L2, }. (80)

Therefore, ¥ is solution of problem (17), (18) and (19) if and only if, for all (I,n) € 7
‘I>(t; T*) = eitquo_lfR;’n\II(t, T'*)

is solution of

aﬂI’ = Z.D‘/z,u,t(}7 t e ]R, Ty > Z(t), (81)
Z(t)®a(t, 2(1)) = Rult, (1), — Z(t)Ps(t,2(1)) = a2, 2(1)), (82)
Bt =s5,.)=®,(.) =Ry V()€ L2 (83)

In the same way, ¥ is solution of problem (20) and (21) if and only if, for all (I,n) € Z,
O(t,rs) o= Ry WL, 74)
is solution of
8;® = iDyy @, (84)
P(t=0,.) = Pyy =RV, € L2, (85)

In [4], proposition VI.2 gives a solution ®(¢) of the problem (81), (82) and (83) expressed with the
propagator U, (t,s):

Proposition 6.1
If &5 € D(Dy, . ), then there exists a unique solution [®()]u = [U, (,5)®s]lu € CH(R¢, LE) N
CO(Ry, Hg) of (81) (82) and (83) :
o(t) e DD, ).

Vit
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Moreover,

12@)[l: = [|®s]ls (86)
and U, (t,s) can be extended in an isometric strongly continuous propagator from L? onto L, and for
an R > z(s)

(> R= ®s(r,w) =0) = (> R+t —s|=[U, (ts5)®](rs,w)=0).

Thanks to the notations (69) and (71), we give the important relations connecting propagator U, (t, s)
with U (¢, s) defined in proposition (3.1):

( ) l(s g TO @ gln vy, t s Rln L2 @ glnLQ _>L? = @ 8;InL% (87)
(I,n)ex (I,n)eT (I,n)eT

Subsequently, to simplify the notations, we forget subscripts In and v in the above one dimensional
problem. Given a interval B := (a,b) C R,, and V € L*(R,,), then, on L?(B)* we define the self-

adjoint operator D,, , with the dense domain D(D,, , ) such that
D,, =T'9, +V, (88)
D(D, ,)={® € L*B)*; D,,® € L*(B)*, r. € 0B = ity* ®(r.) = i®(r,) }, (89)

where 77 is the outgoing normal of B and I'' given by (23). Hence by the Kato-Rellich and spectral
theorem, the problem

0;® =iD, , ¢, &®(t=0)Ty, (90)
is solved with the help of the propagator U, , (), following the proposition:

Proposition 6.2
Given ®y € D(D, ), then there exists a unique solution ®() = U, , ()@ € C°(R,,D(D, ,)) N

V,B
C'(Ry, L*(B)*) and
12@®)[] = [|®ol|-
Moreover, U, , (t) can be extended, by density and continuity, in strongly unitary group on L*(B)*.
In some useful particular cases, we have an explicit formula:

Lemma 6.1

Given % = (9, 89, 8%, 89) € L? for t > s, then ®(t,r.) = Up(t, s)®o(r.) is given by
re > 2(t) : ®a(t,re) = B (re —t +5), P3(t,r.) = BY(re —t+ ),
re>2(t) +s—t: ®i(t,r) = ®(r. +t—s), ®u(t,r.) = ®(r. +t—s),
2(t) <re <2(t) +s—t: By(t, ) = —Z(17(re + 1)) (re +t + 5 —27(re + 1)),
2t) <re <z(t)+s—t: Byt,r) = Z(1(re +1)BS(re +t+5—27(r. +1)),
where T is defined by (7). Given ®° € L?(B)*, with B =] — o0, a] or [a,+o0[, a € RU {—00,+00} and
d € R, then, if B =] —o0,a], ®(t,r.) = U (t)®o(r«) is given by

et t(®Y(2a — 1y — 1), R (ry — 1), BY(re — 1), —PI(2a — i — 1)), T+t > a,
d(t,r,) = "” E((re +1), ®3(re — 1), ®(re — 1), BY(r +1)), e+t <a, r. —t <a,
"” E(®Y(rv +1), —®}(2a — ri + 1), 80(2a — 7 + 1), B (rs + 1)), 7 —t > a,
and, if B = [a,+00[, by
et (@Y (r. + 1), 8920+t — 1), — B (20 + t —7.), B (e + 1)), . —t <,
P(t,r.) =< € T(DV(r, +1), @ (ry — 1), B(ry — ), %(rs +1)), ri —t >a, r.+t>a,
et T (—@3(2a—ry —t), B (re —t), B (r. — 1), ®3(2a — 7. — t)), T+t < a.
Proof:
The result follows from the study of the characteristics of problems (81)-(82) and (84). [ |
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6.2 Proof of theorem 4.1 on the scattering theory

Before proving theorem 4.1, we state the following proposition concerning the spectral properties of Dgy
and Dgy.

Proposition 6.3
If A > 0, then

0(Dpy ) = 04c(Dpw ) = R (91)
and

(D) = Gae( D) = K. (92)
with Dy and Dy, given by (78)(80) and (22)(25).

Proof:

When A = 0 the properties (91) and (92) have been proved in [19]. If A > 0 the proof remains essentially
similar. Principally, our demonstration in [19] bases one’s argument on the Mourre theory and, in this
work, when A = 0, we wrote

—Dpy = -T80,, +V, + Vi + Vpu

V= #7 V= —(1+1/2)r? F(r);, Vin = VF(r)I'* = my/F(r)y°.

The main difficulty of this proof is the obtaining of Mourre inequality. To do this, we must choose an
appropriate conjugate operator A. But, we remark that
im v, =49,
Tye—>—00 TO
For the positive energies, when ¢@) < 0 (respectively for negative energies and ¢@) > 0), we obtain easily
this inequality if A is the classical generator of dilations. But, when ¢@Q > 0 (respectively ¢@ < 0), this
choice of conjugate operator does not allows us to obtain the result. Indeed, if we put h = —Dgy and
consider the case ¢ > 0, then we obtain the following equality (in sense of the quadratic forms in Hy}):

X(h)i[h, Alx(h) > (e = qQr~')x*(h) + k, >0, A= —% (redp. + 0r.74),
where k is a L2 compact operator and x € C§°(R) such that suppy C Rf — {m}. Then, to overcome the
problem, we put:
i

(T*ar* +a,«*r*) + ﬂ’YO’}/lT*J_(T*), J_ € COO(RT*), J_(T*) — 1 Tx S :3
2 . S

A= 0 ry

With this choice, the Mourre assumptions are satisfied and since qual —qQr—! >0, we have:
X(W)ilh, Alx(h) 2 (e +qQrg T —qQr T )X (h) + & 2 ex*(h) + &,

with e > 0 and ' is a compact operator on L3. When A > 0, the result becomes widespread. Indeed,
we put
hi=h-— ﬂ
T+

Then, for the difficult cases, we define

i 1 1
3 (1«0, + Or, 1) +qQ (— - —) VoytroJ_(r.).
To T+

A=
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Therefore, for ¢q@Q > 0 and suppy C R — {m}, we obtain:

"

x(h)ilh, Alx(h) > ex*(h) + qQJ_(rg" — q@Qri")x*(h) — qQJ_(r—* — qQri")x*(h) + k
>e(h)+k, >0,

with € > 0 and k" is a L3-compact operator on LZ. To finish, as in [4], we check that Dgg has no
eigenvalues when A > 0. [ ]

Proof of theorem 4.1:
The case where A = 0 was proved in [19] and we consider only the case A > 0. Given two self-adjoint
operators A on H4 and B on Hp, we formally define the wave operators

WH(4,B,7) =5~ lim e " Je"PP,.(B), (93)

where P,.(B) is the projector on the absolutely continuous subspace of B and J the bounded identifying
operator between Hp and H4. When H4 = Hp and J = Id, we denote W*(A, B, Id) simply by
W*(A, B). First, we separate the problems at the horizon and at infinity. To do this, we use the
self-adjoint operator D, ® D} on L2, such that :

3

T 2 7 sinf

2
D, D/ = —? +I! (8” + Fir) + iF(r)) +\/F(r) <F7(6g + Lot 6) + Dy + 1“4) ,
D (D5,) = {¥ € L2 — 00, 1]y, x &2, F/2(r)dr.d)’s

Dy, ¥ € L7 — 00,1y, x 82,22 (r)dr.dw)' 4 ¥(1, ) = % (1)}

D (D) {\I—' € L([1, +o00[r, xS2, r> FY2(r)dr.dw)*;

DI W € L2([1, +00],. xS, 12 FY2(r)dr.dw)t, —7 (1, ) = i¥(1, .)} .
Thanks to formula (78) we reduce Dy on L2, by Dy on L2 In the same way, via operators (70) and
(72), we can also reduce D,,, ® DY, on LZ, by the self-adjoint operator D, ® D, with the dense
domain D (D, ) @ D (Dyfyy ) = Pr[D (Dviy J=00,1]) @ D (Dviy 1,400[)] using definitions (79), (88) and

(89). Since
(DBH ii)_l - (D];H EBD;;H :ti)_l

is of finite rank and thus trace class on L%, Birman-Kuroda theorem (see [23]) assures that
W= (Dou , Doy @ D)

exists on L2, and
Ran (W* (Dyu , Dy @ Dy ) = Pac (Dyw ) L2,

Therefore, the following wave operator

W* (Dpy , Dy, @ D1 ) = € EFW™ (Dyu , Dy, @ Dy, ) REZ (94)
(I,n)ez

exists on L2, and
Ran (W* (Dgy , Dy, ® D}, )) = Poe(Dgu ) L2y, (95)
Now, as

|r —rol <O (62”0T*) e > —00, |r—714| <O (62””*) rv — +00,
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we compare respectively, the self-adjoint operators D, and D_ on L?*(] — o0, 1],., x S2)* with the dense
domain D(D” ), given by

—

D(DZ) ={¥ € L*(] - 00,1}, x 5, dr.dw)";
D~V e L*(] = 00,1],, x 82, dr.dw)*, v"¥(1,.) =i¥(1,.)},

and, the self-adjoint operators D, and D[i_) on L2([1, +0o],. xS2)* with the dense domain D(DAJ; )
given by

D:r_’ = Flar* - ﬂ

, .

DD ) = {¥ € L*([1,+00[,, xS3, dr.dw)*;

)

DY e L([L, +ool,, xS2, drude)’, —~'¥(L,) = (1)} .
We introduce 7, such that
T U(re,w) = Tp(0)(re,w) = r L FY4(0) 0 (r,, w) (96)

and we apply respectively lemma 4.11 in [19] to W* (7' D}, 7, D:_) ) on L2([1,4+00[,, xS2, dr.dw)*
and to W*(7,7 ' Dy, Jr,D”) on L*(] — 00,1],, x S2, dr.dw)*. Hence

WH(Dg, , D2, 7)  (resp. WE(DL, DY, 7)) (97)
exists on L*(] — 00, 1], x S2, dr.dw)* (vesp. L*([1, +o0[., xS2, dr.dw)*), and

Ran (W (Dyy , D, Jr)) = Pac(Dyyy )L*(] = 00,1y, x 83, drodw)* (98)
(resp. Ran (Wi(DQH ,D[i_) ,j,q)) = P (D, ) L2([1, 400, xS2, dr.dw)* ) . (99)

We introduce the operators J* and J} respectively as the adjoint of

- _ X,‘II T*S]- o _ ]. T'*<G/
j_\y—)j_\y—{o T*Z]- 7X—€C (]R’I‘*)azlayb;a<b<17 X—(r*)_ 0 7-*>b
(100)
and
I T*Z]. . 1 7'*>b
j+:\:[l—)j+ql:{%<+ T*Sl 7X+€C (]Rr*),ﬂa,b,1<a<b, X+(r*):{0 r < a
(101)

Since D_ on L*(] — o0, 1], X 52, dr.dw)* and D_ on Lii have spherical symmetry, we use lemma 6.1
which gives the explicit calculation of the unitary group generated by these self-adjoint operators. Hence,
for all ¥y € C5°(] — 00, 1], x S2)* and since 9., x — is compactly supported and supp(x% — 1) C [a, +o0l:

H (D_J. —J.D~)etP: \1:0‘ e L'(R,),

= ||@nx) P

L2 L2(]—o00,1]p, XS2, dr.dw)*
—

H (T7 T — 1) eitPe ‘I’O‘ 0, £ oo,

L2(]—o00,1],, XS2, dr.dw)*
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Therefore, by a standard density argument, the wave operator W*(D_ ,D_,J) exists and is an isom-
etry on L2(] — 00, 1],, x S2, dr.dw)*. Moreover, if we take ¥ € L** N C§°(R,, x S2)* such that, for real
R >0, supp¥s C [R+ 1, —R + 1], we obtain for +7 = +R :

j_*eiTD‘— ‘Ilat _ e*itD‘: j_*ei(T+t)D‘_ ‘Ilat Vt € ]R,

|| (T-TJ* =1) eitD \I»'SEHL2 — 0, t = %00,
since supp(x2 — 1) C [a, +oo[. Therefore, by density, the following wave operator
W*(D-,D_,J") (102)
exists on Lii, and

Ran (WE(D_,D_,J*)) = Pae(D_)L*(] — 00,1],, x S2, dr.dw)*. (103)

*

Using again the lemma 6.1, which gives the explicit calculation of the unitary group generated by the
self-adjoint operator D on L?([1, +o0,, xS2, dr.dw)?, as above and in the same way, we deduce that
the wave operator :

Wi(D:_) ,D, ., ,JY) (104)
exists on Lfi, and
Ran (Wi(DAJ; D, | ,jj)) — Poo(D})LA([1, 400y, xS2, drudw)*. (105)
We define the operators :
<
I L2 (] = 00,1y, x 82,2 FY2(r)drdw)* — L2, W J-0 = { SI’ : > i (106)
+ .72 2 21/2 4 2, O e 2>1
J& i LA([1, oo, XS5, r  F/ 2 (r)dredw)* — La;; U JIU = 0 r. <1’ (107)

and the chain rule applied to (94)(95), (97)(99), (102)(103), (104)(105) assures that
W*(Duw,D_,J_J;J%) ® WDy, D, ., TXT,T5)

exists on Lii &) Lfi By proposition 6.3, the spectrum of Dygy is purely absolutely continuous when
A > 0. Hence

Ran (W*(Dyy ,D_, J_ T2 T*) © W (D , D, _, ,JXT,TL)) = L2y
Finally
WEeWE =W*(Dyw,D_,J_0r ") @ WE(Dew , D, _, ,JXT:T;) in L%,
because for all ¥+ ¢ Lii = Lfi_)
{T. = TZT: T2} P O || < |[{xe —x-}e™P- \Ili||L2(]—oo,1]r*xSE, dr,awys — 0y t = £, (108)
H{j,\_, ~JXT.Tr) e Pas \II:FH < H{X% — x4 e Pro \Iﬁ‘ -0, t — +oo.

(109)

L2([1,+00[r, XS2, dridw)*

Indeed, taking ¥% € L** N C§°(R., x S2)* = L7* N C5°(R,, x S2)* we have

eitD \I,i(r*) — eitqu‘;llIli(T* +1), RIS \IIJF(T*) — eitQQ’"?\I;jF(T* +t)

and, since x. — x— and x_, — x4+ are compactly supported, by density we obtain the limits (108) and
(109) for all ¥+ € L+ = L7 . ]
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6.3 Sharp estimate of 1y ..(Do)U(0,7): proof of theorem 5.2

We briefly describe the steps of the proof. First, we take advantage of the spherical invariance to reduce
our study to a one dimensional problem. Since with (74), (75) and (87) we have

—1 v v qQ
1[0,+oo[(D0)U(0>T) =e ° @ 8ln1[5,-‘roo[(l)vl‘,,,0 )UV,‘,, 0, D)X, 6:=-"—,

r
(L,n)ex 0

it is sufficient to study the propagator 1j5 ;o [(D,, ,)U,, (0,7). Now, to simplify the notations, we

v

forget subscripts In and v. We choose .J € C®(R,, ) satisfying

s

1 r.<a
Jda,beR 0<a<b<1 j(r*)_{o " (110)
and split in two parts our investigation:
1[5,+00[(Dv,0 )Uv (OvT) = 1[5,+00[(Dv,0 )ij (OvT) + 1[5,+00[(Dv,o )(1 - j)UV (OaT)' (111)

Far from the star, we treat the term 15 4 .((D,,)(1 — J)U, (0,T) using theorem 4.1 on the scattering
by the eternal black-hole. Indeed, we have:

1[6,+oo[(Dv,0 )(1 - L7)Uv (OaT) = 1[67+oo[(Dv.0 )(1 - l-7)Uv,;; (_T)a

seeing that

—z qQ
U o @ 8ln Vi :Rln
(L,m)ex

where U, . 1s defined by proposition 6.2. Near the star, with ®° in ad-hoc dense subspace on L%, we note

that JU, (0,T)®° is given by J®v, 4, (0,7,). The function ®v,g, (t,7+) is the only solution of the mixed
characteristic problem (81) and (82) with initial data gr(t) specified on the characteristic sub-manifold
[:={(t,r.) € Ry x [2(t),+00[; 7« =1 —t} such that

gr(t) :== 40, [U, (t,T)®°(1 — t)]2, [U, (t,T)®°(1 —1)]3,0), Ft, >0: t >t, = gr(t) =0.

Concurrently, in L? norm, we prove that
gr(t) ~ g7 (1) = (W2 8°)(1 =2t = T), T — +o0,
where the wave operator W, is defined in lemma 6.3, seeing that
= @ enLw R, (112)
(L,m)ex

Then, in L norm we obtain

15, 400[(Dy 0 )T U, (0, T)®° ~ 115, 400[(Dy o )T @y g2 ~ Lo 4o (Dy o )T g gr/2, T — +00.

The last term entails asymptotically an explicit calculation which leads to a term of KMS-type depending
on W~ . This proof using the characteristic problem allows us to easily introduce the wave operator W~
This operator is connected with the curvature of the space-time at the vicinity of the eternal black- hole
horizon. To finish, we prove that the two terms on the right hand side in (111) are asymptotically
orthogonal as T' — +00.
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6.3.1 Preliminary estimate for 15 (D, ,)U, (0,T)

In this part, we use the notations introduce by formulas (74) (75), (88) (89) and propositions (6.1)(6.2).
Therefore, we note that

Dy, =D, L§ = L*([2(0), +o0[r., dr.)*. (113)

[2(0),+oo[ ?

Since Dy = e™157°P, D, 57" P — %, then, thanks to proposition 6.3, we have o(D, ) = 04c(D, . )
and therefore we deduce the following lemma of local energy decay:

Lemma 6.2

If A >0, then

w7 5 09 <o,
with f € CO(]Ra M4 (C)) and lim,, 400 |f(r4)] = 0.
Proof:

We consider the dense subspace L4(D, . ) in L3 such that

L4D,.)={®ec L BCR, |B|<+o, 15(D,,)®=3}.

Aso(D, ) =04(D,. ), we have U, , (t) =0, t = Fo0. Then for all ® € L4(D, , )

lim ||f 15(D,.)U, . (t)(}” =0,

t—too

because f1p(D, ) is compact on L§ following proposition B.7.1 in [7]. Hence, by a density argument,
the limit is proved for ® € L2. |

We choose a cut-off function x € C*(R,, ), such that

Ja,beER, —oc0<a<b<+oo X(r*):{(l) ::iZ’ (114)
and the subspaces Lf{', Lf{ of L3, satisfying :
Lit={®eL}; &,=03=0}, Ly ={®ecLy; & =&, =0}.
Therefore, we state the lemma:
Lemma 6.3
The wave operators
WE =s— lim U, (~0xTy, (1), in I3
W o =5 Jim Ty g (DA =00 (1) i L§ = L2([2(0), +00]s.., dr,)*
exist and are independent of x satisfying (114). Moreover
Ran (W2 ) = 125, Ran (WE ) = Pac (D, o) L (115)
where P, (Dv.[z(o),+m[) is the projector on the absolutely continuous subspace of D, .0y 4u» and for
f € Hg
Jim [ ) (W, £) -xt. @], =0 (116)
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Proof:
For the wave operator W(')i,, the existence and property (115) are contained in theorem 4.1, since (112)

exists and is an isometry from L}, onto L7, := P, L>. For wE

0y 4oo 0 WE TIOtE that

1

(D @D, —(D,, i)'

V,]—o0,2(0)] :tl)_

2(0),+ ool
is of finite rank. Then, with the notations (93) introduced in the proof of theorem 4.1, we obtain by the
Birman-Kuroda theorem the existence on L% of the wave operator

wE (Do_lm‘z(o)] Dy, Jh) @ w* (Dv,[z(o),+m[ Dy, J2) = wt (DO)]%Z(O)] ®D, D,.),

[2(0),+oo[ ? VB

where
._71 b e L12R — ._71(1) = q)h—oo,z(o)] € L2(] — OO,Z(O)]T*, d’l"*)4,
Jp:® €Ly H®=0 . €L*2(0),+00., dr.)" = Lj,

with the property
Ran (W:t (DV,]foo,z(O)] & Dv,[ D, )) = [Pﬂc (D ) ® Pac (DV,[Z(O).+DO[ )] Ll%i'

2(0),+oo[ ? TV, V,]—c0,2(0)]

Now, we must show the equality:
ij.clz(o),+oo[ == (Dy ooy boot» D s T2) - (117)
It arises from lemma 6.2. Indeed, for all ® € L3, we have
|72 — 1 = )10, (t)‘I’”Lg < 1120) 400 XUy (1)@ =0, t = Fo00,
because lim|, |40 1[2(0),4-00[X = 0. Now we prove property (116). Since wave operator W, exists, then

VV(; DV,?‘l = Do,;, VV(; .

Given f € H} = D(D,, ), then there exists ® € L% such that ® = D, _ f. Therefore, with the previous
formula

G, () (W F) = xU. 0f| <
Hy

D, Uy () (W, 1) = XD, Uy (0 |

G () (W2 ) = XU (0

)

+ [V + 06 D, 1} G 0OF]) + |
U () (W, @) = xU. 02

g
Y + 06 D 1 G 0OF]] + G (0 (W, 1) = X0 01|

The first and the third norm on the right hand side are treated by the previous scattering results for
W, and the second using lemma 6.2, since lim,, 4o (IXV|+ [[x, D,.]|) = 0. ]
Now, we solve the characteristic Cauchy problem

Lemma 6.4
For any g := t(O,gg,gg,O) € H}, such that t > ty = g(t) =0, then there exists an unique solution ® of

O® =il'9, ®+iVe, teR z(t)<r.<—t+1, (118)
Dy(t,2(t) = Z(t)P2(t,2(1)), R1(t,2(2) = —Z(t)@s(t,2(t), teR, (119)
(07 ¢27¢370)(t7 _t+1) :g(t)a te ]Ra (120)
t>tg, v € [2(1), -t +1] = @(¢,7.) =0, (121)
with ® € C*(R;, L2) N C°(R;, HY) such that
teR, r, €[2(t), =t + 1] = ®(t, 1) = B(t, 7). (122)

21



Proof:
We prove the uniqueness. Given ¢ a solution of the problem for ¢ = 0 such that ® e C! (Re, LE) N

C°(R;, HE) and z(t) < r, = ®(t,r,) = ®(t,r,). We have for t € R:
—t41

S 1er .

z(t)

—t+1
— B (—t + 1) — 2(8) [Bf (¢, 2 (1)) + 2/( | R<A®E >0 (b,
z(t

= 20 (t—t + 1) — 2|7 (f,—t + 1)
—t+1
+2/ R < 88 —il10, U — VD, & >cu (t,r,)drs.
z(t)
Since ®(¢,7.) satisfies equation (118), then

d —t+1 .
& e = <200 (1=t + 1) — 205 1+ 1), (123)
z(t)

Integrating (123) on [¢t,T], T > t, with respect to time, we obtain with (121),

—t+1 +o0 ) )
[ 18P wradr =2 [ 1l (nar < 21l (124)
z(t) t

Therefore, since g = 0 then ¢ = 0.

Now, we prove the existence of the solution for a regular initial data g = (0, g2, g3,0) € C&(R)*. First,
we solve the following characteristic problem:

Ofy =il 0, fv +iVfy, teR, r,>—-t+1, (125)
fvt,—t+1)=g(t), teR, (126)
te]l —re,re +af = fv(t,re) =0, (127)

where

a = inf [supp(g)] .-

The continuous solution fy of (125), (126) and (127) is given by the continuous solution of the following
equivalent integral problem:

T+a+1
fv(t,?“*):F(X:t-i—?“*—l,T:t—T*—a):{g( 2 )+BF(X;T) §§8:£;8: , (128)
T X—€—a+1
3 [[V ((7E . i% F(X, f)]] d
: V(S FET)| de
BF(X,T)=~| "° ? 2 . (129)
| gy () e e
o [V (A=) Fix, 9] a
For X >0, T > 0, putting
T+a+1

F°(X,T)=9< 2 ); FY (X, T) = BF*(X,T), n >0,

and since, g and V are bounded, we have

(X+1)"

[BE" X, T)| < lglloe V7 67—,

n>1.
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Then the Picard method, gives a unique solution F'(X,T) € C°([0, +oo[x xRy)* of (128) such that
+0o0
F(X,T)=) F"(X,T), |F(X,T)|<llgllpexp (6]IVIl e (1X]+|T1)).
n=0

Seeing that (X >0, T <0) = F(X,T)=0,V € C®(R,,, M4(C)) and for X, T >0

n (X +T n—1
0 F™ (X, T)| + |9y F"(X,T)| < 16 [lgll = [[V[}.~ 12" ﬁ
: (XD (X +T)"
w20l |V vt e = g Vi et
we have F(X,T) € C*({(X,T) € [0, +o0[x xRy : 2t, > X + T + a+ 1})*. Hence,
[®g]m () = [Uv (. t)ov (tg, )ar € C' (R, I2) N CO(Ry, H), (130)
1  fv(tg,re) e > —tg+1,
vty € 1y vty = { ] o (131)

is a solution of (81), (82), (120) and (121) and in particular of (118), (119), (120) and (121) with
g € C}(R). Moreover we have

d “+oo 5 5
=P trdr. =219 @),
—t+1

and integrating this formula on [—o0, t,] with respect to time, we obtain
oo 2 2
[ AP e =20l
—tg+1

Thanks to (130), (131) and (86),

2 2 2
sup [|[®, (¢, )]l = sup ||®, (2, )[l; = 2|l (132)
teR 5 teR
and by density and continuity, we get the existence with g € H. [ |

We introduce some notations: For g € L3,
9" ()i=g(.=T), T20,

and following the previous lemma, when g := (0, g,93,0) € HL, t > t, = g(t) = 0, we define the
operator Gy (g) such that

Gy(g)(re) =T (ra)®y(0,r.), 1.« €[2(0),1], (133)

with J as in (110) and @ (0,r,) the solution of (118), (119), (120) and (121). Moreover, by density and
thanks to (124), formula (133) is well defined for g € L3, t > t, = g(t) = 0. Therefore, we prove the first
important estimate:

Lemma 6.5
Given g :="(0,g2,93,0) € L% such that t > t, = g(t) = 0, then
: T |2 2y zzp \7!
Plim 110, 400[(Dy 5 ) [Go (97)] ||, =2 < g,emo "0 (1 +ero 0) 9>L2, (134)

and

[Go (97)], =0, T — 400, in L§. (135)
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Proof:

As the norm of (134) is uniformly bounded in T by (124), it is enough to obtain (134) for g € C§°(R)*
such that supp(g) C [0, R], R > 0 fixed. For T' > 1%@, we have Go(g?) € [2(0),0] and thanks to lemma
6.1,

GU(gT)(T*) = Z(T(T*)) t( - g37070792)T <T(r*) + ! _2r*> )

with 7 and Z respectively defined by (8) and (76). We define spinor G*, such that

1 1 1 1
GT(r,) = \/Wt( — g3,0,0,95)7 <_2_%1n(—r*) + 5 (Cr) + 5) , r. <0,  (136)

with supp(GT) C] — 00, 0[ and the real Cj, > 0 as in (8). In the first time, we remark that, for f € L3,

<[G"p, f >12= 0, T — +oo. (137)

Indeed, for f € C§°(R)*, we have

0
< fll ey / 1G7)0] (ra)dr = ([ )|y / G| (r)dr

< [GT]L7 f >Lf

< f-@oCme‘%OT*”O||f||Loo(R>4/ e " g|(y)dy — 0, T — +oo.
R

We obtain (137) by density and using the inequality ||[GT]z|| < ||g]|. Moreover, for T > 1= Z(O) , we have,
0
2 2
16715~ [Gotg™ ],y = [ | 167 ) —olg""ar..
We remark that: Z(7(r.)) € C°([2(0),0[) and
lm h(r.) =1, h(rs) == —kor«Z(7(r:)). (138)

re—0~

Indeed, thanks to (8) and (9), (138) entails that

(7'*) m\/l " Z T ) - \/_2H0r* - OI (r*2)7 -1 < Z(T(T*)) S 07 Ty € [Z(O),O[

1+ 2(7(ry)) —2kory + O(r2)
Therefore, using (8) and putting y(r.) = _ﬁ In(—r,) + ﬁ In(Cry) + 1 — T,
2
16"z = [Gole™], |1y
+o0
= 2/ |g(y) —h (—Cm0672Tn072yno+no) g (y + 0(672Tn072yn0+,i0)) |2 dy.

7ﬁ ln(fz(O))Jrﬁ ln(CN0)+%7T
and by Lebesgue theorem, we obtain:

” [GT]L - [GO(QT)]LHE =0, T — +oo. (139)
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With (137), this last limit gives (135). Finally, for T' > —ﬁ In(—2(0)) + ﬁ In(Cy,) + 3, and denoting
F the Fourier transform, we have

2 Feo 2
I P e A il COP | TS (140)

™
“+oo
= 7t / / e Cro ™ TG (y)dy
27 0 R

. z2mp 2xp N\ 7L .
=< g,ero 0r (1+e~0 0>—%) g >r2, (lemma IIL6 in [4]),

d¢, gy) = g(-y/2),

2 2m -1
=2<g,ex Doz (1 + exo DO"‘) g>rz,

which implies, with (139), limit (134). [ |
To prove the following estimate, we need a Gronwall type inequality:

Lemma 6.6
Given J,Ey, Ey € C°([a,b]) and t € [a,b] = E\(t), Ex(t) >0, such that

t

J(t) < Ba(t) + By (1) / J(s)ds, a<t<b, (141)
then a
J(t) < Es() + Ex(t) exp </t B (s)ds) /: Bo(s)ds, a<t<b. (142)
Proof:
We put

R(s) = exp (- / ) El(T)dT> / " J(rdr.

We differentiate R(s) and using (141):

i =a@ew (- [ B@ar) - m@es (- [ B@ar) [Csmar

<B@ew (- [ B).

As R(a) = 0, integrating the result on [a, ], we obtain

R(t) < / t Bs(s) exp (- / ’ El(T)dT> ds.

Since s € [a,t] and E; is non negative:
exp (—/ El(T)dT> <1

/: J(s)ds < exp </t B (T)dT> /: Bs(s)ds,

and (142) follows. [ |

Hence
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Lemma 6.7
Given g :="(0, g2, 93,0) € L% such that t > t, = g(t) = 0, then

Tl_i)rf()o ” [GU (gT)]L - [GV (QT)]LHi =0, (143)
and

[Gv (¢")], =0, T—+oo, in L§. (144)
Proof:

With (124), it is enough to obtain the result for g € C§°(R)* such that supp(g) C [0, R], R > 0 fixed. By
lemma 6.4, formulas (130) and (131), for r. € [2(0),1], we have
Gy (97) (rs) = T (r) [Uv (0, R+ T) ¢y (R +T,.)] (rs),

fv(R+T,ry) re>—-R-T+1,

ov(R+Tr) =14 2(R+T)<r, <—R—-T+1.

(145)

Now, for r, € [2(0), 1], we write

[Gv (97) = Go (9")] (ra) = T(r) [UV(0, R+ T)py (R+T,.) = Up(0, R+ T)po (R + T’ )] (),
=J () [Uv(0,R+T) {¢v(R+T,.) - o(R+T,.)}] (rs)
— J(r«) [{UO(O,R +T)—-Uy(0,R+ T)}¢0(R+ T, .)] (rv),
=: A; + As.

We estimate A;. First, with (145), we have

—+o0
14,12 < / 6y (R +T,r) — do(R + T, dre.

z(R+T)
+oo
= [ AR T - R+ TR,
—R—T+1
— J(R+T).
But,
d
J(t) = |fv — fol” (t,—t + 1) + 2%/ <O (fv — fo) (t,74), (fv — fo) (t,74) > drs,
dt t+1

= Jl + 2§RJZ

Since the solutions fy and fp have the same characteristic data, J; = 0. On the other hand, with the
help of equations satisfied by fy and fy, we have:

+oo
JZ = / < irlar* (fV - fO) (t,T'*) -f—inv(t,T'*), (fV - fU) (t,T'*) > d’l"*,
—t+1

“+oo
= _/ < (fv — fo) (t,r*),irlar* (fv = fo) (t,74) > dr.

—t+1

+oo
+ / <V Iy (), (fv = fo) (6,7) Seu drs,
—tt1

+oo
= _/ < (fV - fO) (t,r*),iflﬁr* (fV - fO) (t,?"*) +7:VfV(t7T*) > dT*
—t+1
+2§R/ <Vt (fy — fo) (br2) Ses drs,
t+1

- _J +2§R/ <V ot (fy — fo) (br2) Ses drs.
—t+1
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Then
= 23?/ Vird) fv(t,re), fv(t,re) — fo(t,me) > dre. (146)
t+1

In lemma 6.4, we have proved that the solution fy (¢,z) propagates at speed one . Therefore, for t €
[T,T + R], we have

supp (¢) C [T,T + R] = supp (fv(t,.)) C[-t+1,t—2T+1], T,R>0, (147)
= J(0) = 0.

Hence, integrating (146) on [0,7 + R], we obtain:

T+R
JR+T)= 2%/ / Vi(ra) fv(t,re), fv(t,re) — fo(t,re) > dridt.
t+1

By the Cauchy-Schwartz inequality,

T+R
J(R+T) <2 / / < V) o (6r2), For () — folt,ra) S| dradt,
t+1

T+R ) 1/2 Lo
2/0 </t+1| (re) fv (t,me)] dr*> J(t)*/=dt.

Thanks to the remark (147) and as \/z < z + 1 for > 0, then we deduce that

IN

T+R
J(R+T)§E2(T+R)+E1(T+R)/ J(t)dt,
Ey(t) :==4|lgl|sup {|V(2)]; < =t +2R+ 1}, Es(t) :=tE(t).

As Ei,J € C°(R), by lemma 6.6, we have
T+R T+R
J(T + R) < Ex(T+ R) + Ei(T + R)exp (/ El(s)ds> / Es(s)ds.
0 0

Since, V (r.) is exponentially decreasing as r. — —o0, we get
|41]l5 < J(R+T) =0, T — +oo. (148)
To estimate As, we use the usual formula
R+T
{Ug(0,R+T)—-Uy(0,R+T)}do(R+T,.) = — / Uv(0,5)VU(s,R+T)po(R+T,.)ds
0
Hence, we deduce with (86) that
l42llg < [{U(0, R+T) = Uv(0,R+T)} po(R+ T, )y »
R+T
<[ WU R+ T)o(R+ T, d. (149)
0

Now we defined the time 7,, such that

2(1y) —1p = =2T + 1.
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Thanks to (6):
1
T=T-35+0 (e72%T), T = +o0 (150)

and according lemma 6.1, we have also

s €[0,72] = [Uo(s, R+ T)bo(R+T,)] (rs) = Z(r(r)) *( = g3,0,0,90)7 <T(r*) n #) (151)

and
s € [0,74] = supp[Uo(s, R+ T)o(R+T,.)] C [-s — |O(e 2|, —5]. (152)
Indeed, for s € [0, 4],
supp[Uo(s,R+T)po(R+T,.)] C[-s+ 27— 2T +1,—s],

and with (150), (152) follows. Hence,

r R+T
1421l < / IVUs(s, R + T)do(R + T, ||, ds + / IVUs(s, R + T)do(R + T, )|, ds,
0

T

< Aoy + Ass.

First, we estimate Ap;. With the help of (152) and (151), we have,

A21 S / \/ [(S)dS
0

where

= 1—r—s\/|?

I(s) := / | | ‘V(’I"*)Z(T(T*)) t( —93,0,0,90)% (T(T*) + %) dr,. (153)

—s—|O(e=2%0T)

Using (8) and putting y(r.) = —5= In(—r.) + 5= In(Cy,) + 5% — T, we have
) y(—s) ) )
I(s) <2||V|L /( o )|)h (re(y,s,1)) g (y + O(r.(y, s, T)))|" dy,
y(—s— e—2r0T

< CaVIZ=llglze [in (s + |O(e™*T)|) = In(s)],  C: >0,

with h defined in (138). First, for z > 0, log(z + 1) < z. Hence we obtain

/ VI(s)ds < C.vyg / \/ln (s + |(’)(e—2noT)|) — In(s)ds
0 0
+oo 1 1
<Chvyg |O(e_2’“0T)|/ %dm, C(T) := |T;10(e—2n0T)
a(T)

teo Jlog(z + 1) da:)
1 x? 7

)

1
<C.vy |O(e’2”°T)| (2/ @dme
o)

2

<C.vy (\/ |70 (e=280T)| 4+ C |O(e_2“°T)|> — 0, T — +oo.
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For s € [r;, T + R] we have: supp[Uo(s, R+ T)¢po(R+ T,.)] C [2(s),2R + 1 — s]. Hence, thanks to (150)
and (132),

R+T
Aps < / IVUo(s, R+ T)do(R + T, )| ds

T

T+R
< 2||g||/ sup{|V(2)]; 2(s) <z <2R+1-s} ds =0, T — +o0.
TT

Then, we obtain that
|42]]p = 0, T — +oo. (154)
Now, finally, with (154) and (148), we deduce that
IGo (97)], = [Gv (4], lly < 14allo + 1 42lly = 0, T = +oo.
Lastly, the above result with (135), entails (144). [ |

Lemma 6.8
Given g := (0, g2,93,0) € L% such that t > t, = g(t) = 0, then

-1

. ™ |2 2D, Dy

Pim 15, 4001(Dy ) [Gv (67)] ||, =2 < grem0 02 (1 +exo 0) 9>12, (155)

with
5= 19,
To
Proof:
First, we define V, thanks to V' such that
Voo :=0Ips +cA, = lim V(r.), d= ﬂ, ¢ =—m\/F(ry), (156)
s —>+00 To

where A, as in (76). If ¢ < 0 (A = 0), thus by assumption v # (2k + 1)m, k € Z and from the proof of
lemma III-7 in [4], we set that:

1[07+00[ (DCAV,]—oo,z(O)] ©® DcA,,,,[z(O),+oo[) - 1[07+00[ (DcA,,.;) is compact. (157)

For g € C§°(R)* such that supp(g) C [0, R], R > 0 fixed, and T > —ﬁ In(—2(0)) + ﬁ In(Cy,) + 5, we
have supp (G*) C]z(0), 0 which entails:

Lo, 4-00f (DCAVv]—OOvZ(O)] D DcAu,[z(O),+oo[) [GT]L =0® Lo, 4o (DcAV,[z(O),+oo[) [GT]L J
where GT' is defined by (136). Since,

L5, 4o (DVoo,O) = Ljo, 4o (DcAu,o ) = Lo, 4o (DgA,,,[z(o).Jroo[) (158)

and according to (137) and (157), we deduce that

||1[07+0°[ (DgAu,[z(o).Jroo[) [GT]L - 1[07+00[ (DcA.,,z) [GT]L” =0, T — +oo. (159)

Seeing that D¢ 4, r is the Dirac Hamiltonian, using the Fourier transform F:

1 1 .
-7:1[0,+oo[ (D;A,,,;z) = 3 + W (ZfFl + (A,,) F.
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We remark that

|7 ([671,) ©F = 4roBD)IBBDN,

6(B(T)¢) := /Re—noyeiﬁB(T)e*“”g(y)d% B(T) := Cye~2roT+ro0,
Hence, thanks to Lebesgue’s theorem,

10,4000 (D) [67, = Lo soof (Do, ) [GT], |17

13 1 .
:C’/Z rt 72F1+§A d¢, Cy>0,
1 i Eie (i€ | '3 1
2
. 1 -
<c/’—”rl—— '+ B(T 8> dy — 0, T — 400, Co > 0.
<G| o ey TR (in (T)sAv)| 0(m)]” dn 00, Ch
(160)
By (140), we have,
2 2
”1[0,4—00[ (Do,z) [GT]L” - / |‘7: GT | d§ = ”1[0 Fo0[ ( 00) [GT] ” (161)
As |I[GT]L]l < llgll, by density and using (158), (159) ,(160), (161) and (139), we obtain, for g € L3
2
25,500t (P o) [Go (9] = 20,100t (Do) [Go (")), P 5 0. T 400 (162)
If ¢ =0 (A > 0), then we have clearly:
2 2
||1[57+0°[ (Dy o) [Go (gT)]L” = ”1[0#—00[ (Dy0) [Go (gT)]L” : (163)
Moreover, from lemma III-10 in [4], we have
15,100 (Do) = Lis400[ (Dyy ) is compact. (164)

Then, using respectively (143), (164)-(135), (162)-(163) and (134), we conclude that:
im0 (,0) [Gv (6], = tim [ (D) [Go ()],
= hm 115 400 (Do) [Go (9)]

T—+oc0 [
(Do) [Go (9]l

:2<g,e%D0>:: (1+ "_WD-L) g>r2 .

- Tgr}rl 1. +2

|
We defined a dense subspace Dy, of L%, such that,
Dp={®€Hg: 3R>0 r. < R= ®(r,) =0}.
For f € Dy, we put
g2(t) := "0, [Uv (t, D) Ly, [Uv (6,1 ]y, 0)(=t + 1), (165)
g(t) = (W; f) (=2t +1), (166)
where [z]; is the jth component of z € C*. Moreover
2>T—R+1= got) = (167)
2> -R+1= g(t) =0. (168)
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Lemma 6.9
Given f € Dy, with the definitions (165) and (166) we have

—+o0o
/0

T
2

2
(t)| dt -0, T — +oo. (169)

gr(t) — g

Proof:
We define ® such that

®(t,r) :=U, . () f(r).
Since f € Dg, then,
It < R—r. = ®(t,r,) = (WO: f) (ry —t) = 0. (170)

Then, using the notation of (165) and for ¢ + r, < R, we remark that ®(¢,r,) as is solution of
D(t,ry) = (VV[; f) (re —1t) +/ A®(t, 7., s)ds, (171)

with

=14 = [A®(t,rs,5)]; = —[iV(s)®(re = 5 +1,5)];,

7=23 = [A®(t, 1., 5)]; = [(V(s)®(s — s +1¢,9)];.

(From (171), for r, < R, we deduce that

Tx
18Crll g oo s < Wiz £, +2/_Oo V0 = 5+ 7o)l s o erpye 4
2 [ VIR0 = 1ot e 05

<[ s

T
2 [ VUGl ds

— 00

2 [ VOOl o 0

— 00
Tx

< Oy [ fllps +4 / V)l (—so gy ds: - Co > 0.

— 00

Since, V (s) is exponentially decreasing as s — —oo, by Gronwall lemma we obtain

sup ||¢(-;r*)||H1(]_007R_,,*])4 < +00. (172)
r«<R

On the other hand, using (171) and (172), we have for r. <R

[oc.r - w,. s -] Y LT P—

H'(]—oo,R—r.])* T J_

gcg/* V(s)|ds, Cs> 0.

—00

Thanks to the Sobolev embedding, for r, < R, we conclude that

sup [ @(0,r.) = W 7(r. — )| gcg/* V(s)ds, Cs>0. (173)

oc<R—7, —00
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We define

and remark that
gt 0 = [U. ¢ —1) (W )] (-2t +),
t
gT(t) = (07 [Uv,z (t - T)f]2 ) [Uv,z (t - T)f]g 70)(_t + 1)
Therefore, choosing x € C*°(R,, ) a cut-off function such that

1 re<a

Ja,beR, —oco<a<b<0 X(T*):{O > b

and for ¢ > 0 we deduce that

+oo 2
1< [t -1 (W F) () - x(-t+ DU - D+ 1)
i
2
< - _
<¢ sw_ . @ (W 1) =30 ] ..
+oo 2
+/ U (t=T) (W, f) (=t +1) = @(t =T, ~t+ 1)‘ dt.
¢
By the Sobolev embedding and formula (173), for (,T > 1 — R, we obtain
1<¢ sw_ [t ) (W 7) ~ 0. )]
— USC—T 0,R 0, V,R Hi
+o0 2
+/ sup |U. () (WO: f) (=t +1) — ®(0, —t + 1)‘ dt, T>R-1,
¢ o<t-T
9 +o0 —t+1 2
<¢ sw o0 (W) ~xti @], ven [ ([ ves) a
o<¢-T Hy ¢ —o0

Thanks to lemma 6.3 and since V' (s) is exponentially decreasing as s — —o0, we conclude that limp_, oo I =
0.

|
Lemma 6.10
Given f € L}, then
l D, TP =< W fe% 0 (1450w 174
P 5,400 (Do )TUV (0, 1) fllg =< W f, e b ( +tero ) Wi f >, (174)
with
5= 19
To ’
and
JUy(0,T)f =0, T — +4oco0, in L3 (175)
Proof:
For f € Dy, R > 0 fixed, thanks to (167), (168), (124) and (114), we have
T 2 T 2
T S )0 R e
+o0 2
< 2/ gr(t) — g%(t)‘ dt -0, T — +oo0. (176)
0
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According to lemma 6.9

TI—I)IEOO ||1[67+Oo[(DV0 )jUV(O’T)fH(Q)

— T]_i}foo H1[6,+00[(DV>0 ) [GV (g%)}LHZ ’

_ 27 2m p -1 _
=2 [ <W _f(1—2t),e~ 0= (1+e*0 0>i) W f(1—=2t) > dt,
R
_ 2r 2y -1 _
=< VVO,?: freroon (1 +ero 08 ) VVO,?: f >LE ’

With limit (176) and lemma 6.7 we obtain (175) for f € Dg. Since all norms are uniformly bounded with
respect to 7', lemma is proved by density. [ |

Finally, we prove the main result of this subpart:

Proposition 6.4
Given f € L%, then

. 2 _ 2
Tl—l)g-loo ||1[6’+Oo[(DV>0 )UV (O’T)'fHO = ‘|1[57+00[(Dv.0 )WV,[Z(O),+OO[ fHO
x . -1
+ < W femoths (1 +e%0Do,;,) W f >0z (177)
with
5= 99
To
Proof:

With simple calculation, we deduce

||1[57+OO[(DV,0 )Uv (OaT)f||(2) = ||1[6,+oo[(Dv,0 )ij (OaT)f||(2) + ||1[67+oo[(Dv,0 )(1 - l-7)UV (OaT).f”(Q)
+2R < 1[57+OO[(DV,0 )(1 - L7)Uv (OaT).fa 1[6,+oo[(Dv.0 )ij (OaT)f >L§ -

According to limit (175) and lemma 6.3 the last term is zero as T' — +o00. The two norms are by lemma
6.10 and lemma 6.3. ]

6.3.2 Proof of theorem 5.2

Now, we prove the key estimate. Using operators (69), (71) and the properties (73), (74) and (87), by
Lebesgue theorem and proposition 6.4, we have

2
||1[0,+oo[(D0) U(OaT)f”(z) = Z H1[0,+00[(Dvl)u,o - 6)le)u (OvT):R;/nf

’

(I,n)eT o
2
= Z ‘|1[5,+00[(DVLV‘0 )le,v (07 T):R;Inf , ,
(I,;n)eT
2
T—>_+>oo (ZZ):GI Hl[é,Jroo[(Dvlvwo )WVZ,V’[Z(O)v+oo[ N |0

P - —1
b Y < R e e (1B ) mp g s,
(I,n)eT

= Sl + 52.
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By lemma 6.3, the wave operator W - 0y oo
1,0-[2(0),+00
P..(D )LZ. Hence

V,[2(0),+o0]

exists and is an isometry from L% onto

e 14 —_ 174
W+ T @ En Vi 2[2(0), ool Rirn
(L,n)ex

exists and is an isometry from L2, onto P,.(Dy)L3. We put

Q;_) = (WA__‘ )* , (resp. on—; = (WOT_) >*> .
If A >0 (resp. A =0), we define the wave operator:

W, : P(Do)L3 = L, (resp. w,, :Pac(DO)Lgequ),

A,D

such that

* *
W, , = (W+ ) , (resp. W, =9 (W+ ) ) .
By the chain rule theorem, these operators are isometries from PM(DO)LS onto Lf _» (resp. PM(DO)LS
onto LOQ_)). From the previous discussion and the intertwining properties, we have, if A > 0

2
e

0

Sl = Z ‘|WVZ_,V'[z(O)’+OO[ 1[67+00[(DV,?‘1 ):R;/’nf
(I,n)ez

= [W: 15 (Do + 0) |

2
)
0

= w_, W;l[O,Jroo[(DBH)f‘

2
Lz’
A, —

= 2. 1[o,+oo[(DBH)f‘

2
Lz’
A, —

= 1[07+OO[(DA.—v )ﬂl\__) f‘

2
5 .
LA.—»

We put

and remark that
?.D_P'= @ &D, R, -6, 6=-°.
(I,n)ez
Then, with (73) and (112), we obtain that
Sy =< P, Q_f, fPTue%rD“ (1 + ue%D“ ) Q_f>r2, L2, = fP,«L?_,

_ 2
=< Q;f,,ue”D‘— (1+,ue‘7D‘—) 1ﬂ;f >r2, p=e%, o= —ﬂ-, 6:= ﬂ
A Ko To

involving the limits (58). [ |
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