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1 Introdution.

In this paper, we investigate the Hawking e�et [14℄ in the ase of the Dira quantum �eld. We adopt

the semi-lassial approximation by supposing that the spae-time urvature inuenes the �elds, but the

bak-reation on the metri is negleted. Then, we prove the emergene of a thermal state at the last

moments of a gravitational ollapse whih is interpreted by a stati observer at in�nity as an outgoing ux

of partiles and anti-partiles. Moreover, the blak-hole preferentially emits massive spin 1/2 partiles

whose harge is of same sign as its own harge.

The Hawking e�et and more generally the quantum e�ets in the viinity of a blak-hole have been

the subjet of numerous studies, we mention only the works that we have used: [5℄, [11℄, [25℄, [26℄.

A �rst mathematial study of the Hawking radiation was undertaken by J. Dimok and B. S. Kay

[10℄. In this work the authors onsider the ase of a Shwarzshild blak hole for a Klein-Gordon �eld.

By quantizing suitably this �eld in the viinity of the past horizon of the blak hole, the authors show

that an observer loated at in�nity future observes the Hawking radiation. The ase that was initially

onsidered by S. Hawking of gravitational ollapse in the Fok vauum was examined by A. Bahelot. In

a �rst time and for a �eld of Klein-Gordon [1℄, the author showed that a plunging observer in the future

Shwarzshild blak hole observes the Hawking radiation when he rosses the horizon of the blak hole.

In a seond paper and for the same �eld, A. Bahelot obtained the proof of the Hawking e�et [3℄: a

�xed observer in Shwarzshild variables observes at last moments of ollapse in his own proper time,

an outgoing Hawking thermal ux oming from the horizon of the future Shwarzshild blak hole. In

[4℄, this same author extends his study [1℄ to the ase of harged Dira �eld for a plunging observer in a

harged blak hole resulting from a gravitational ollapse.

Just like that was done for the �eld of Klein-Gordon in [3℄, our ontribution to this program of

study is to prove the Hawking e�et for harged Dira �eld of the point of view of a �xed observer in

Shwarzshild variables for a ollapsing harged star. More preisely, in this work (and as for those of A.

Bahelot) we onsider a very simpli�ed model of gravitational ollapse, for whih the star is modelled by

a reeting sphere: the properties of the star surfae are given by the boundary ondition for the Dira

�eld on this surfae. Here, we hose the MIT bag boundary ondition [6℄ whih is onservative and

whih auses a reexion of the �elds on the star surfae like ours for a bosoni �eld by using a Dirihlet

ondition. These simplifying assumptions enable us to avoid diÆult studies of the interations between

the �elds and the uid whih omposes star and of the behavior of this uid at the time of gravitational

ollapse via the Einstein-Maxwell equations. Moreover, we suppose that the spherial symmetry of the
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harged star is preserved during the ollapse, hene, outside this one and by the Birkho� theorem, the

DeSitter-Reissner-Nordstr�m or the Reissner-Nordstr�m spaes time are relevants. The gravitational

ollapse ours in the Fok vauum. Although this last assumption is not physially orret in the ase of

DeSitter-Reissner-Nordstr�m spae time (see [13℄), the mathematial proof remains valid. Indeed, in this

ase, it would be preferable to onsider a thermal state whose temperature is that of Gibbons-Hawking

assoiated to the osmologial horizon. A forthoming work will be to study the Hawking e�et for Dira

�eld in (DeSitter-)Reissner-Nordstr�m spae time by onsidering the gravitational ollapse in a thermal

bath of arbitrary temperature.

This artile is organized as follows: In the seond part, we de�ne the geometrial framework for a

harged ollapsing star desribed by the globally hyperboli manifold (M

oll

; g). This ollapse reates the

(DeSitter-)Reissner-Nordstr�m spae-time (M

bh

; g) produed by a harged blak-hole. In the third part,

we de�ne the Dira equation for massive harged spin 1/2 �eld on (M

oll

; g) with MIT bag boundary

onditions on the star surfae. The mixed problem is well-posed. In the fourth part, we study the

sattering theory for the massive harged Dira �eld in the harged eternal blak-hole (M

bh

; g). To

do this, we introdue the useful wave operators at the horizon and at in�nity. More partiularly, we

extend the studies of [16℄, [21℄ and [18, 19℄, in proving the asymptoti ompleteness for the lassial

wave operators at the horizon and in�nity when we onsider the urved DeSitter-Reissner-Nordstr�m

spae-time. In the �fth part, we onstrut the loal algebra of observable U(M

oll

) as in [8℄ and [9℄, using

the Dira-Fermi Fok representation on some partiular Cauhy hyper-surfae. We de�ne the KMS-state

involving the (Hawking) temperature and the hemial potential. In this same setion we state the main

theorem of this work using the mathematial objets of the previous part. We interpret the result as a

thermal state given by a KMS-state whih is independent on the behavior of the ollapse and boundary

ondition on the star for the Dira �eld. The last setion is devoted to the proofs of the tehnial results

useful to demonstrate the main theorem of this artile.

2 Geometrial desription of a gravitational ollapse.

We introdue the general geometrial framework desribing the reation of a blak-hole by an idealized

star ollapsing. First, we onsider the (DeSitter-)Reissner-Nordstr�m spae-time outside a harged, stati

eternal blak-hole in an expanding universe, as the globally hyperboli manifold (M

bh

; g),

M

bh

= R

t
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:

Here, Q 2 R, M > 0, � � 0, r

0

and r

+

are respetively the eletri harge, the mass, the osmologial

onstant, the radius of the horizon of the blak-hole and the radius of the osmologial horizon. We have

F (r

0

) = F (r

+

) = 0; 2�

0

= F

0

(r

0

) > 0; 2�

+

= F

0

(r

+

) < 0; r 2℄r

0

; r

+

[) F (r) > 0:

with �

0

, �

+

the surfae gravity at the blak hole horizon and at the osmologial horizon. If � = 0 then

F (r) = 1�

2M

r

+

Q

2

r

2

; 0 < jQj �M;

r

0

=M +

p

M

2

�Q

2

; r

+

= +1;

and the globally hyperboli manifold (M

bh

; g) desribes the Reissner-Nordstr�m spae-time whih is

asymptotially at at spatial in�nity. We introdue a radial oordinate r

�

, whih straightens the radial
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null geodesis:

r

�

=

1

2�

0

�

ln(r � r

0

)�

Z

r

r

0

�

1

x� r

0

�
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0

F (x)

�

dx

�

+ ; r 2℄r

0

; r

+

[;  2 R; (2)

dr

�

dr

= F

�1

: (3)

This oordinate shifts the horizon of the blak-hole to the negative in�nity and the osmologial horizon

to the positive in�nity.

As we onsider a blak-hole reated by the ollapse of spherial harged star, if the exat spherial

symmetry of the star in ollapsing is maintained, outside of it, the (DeSitter-)Reissner-Nordstr�m geom-

etry is relevant thanks to Birko�'s theorem [15℄, [20℄. Hene the spae-time outside the spherial harged

star with r

�

-radius z(t); t 2 R, is the manifold (M

oll

; g) suh that :

M

oll

:=

�

(t; r

�

; !) 2 R

t

� R

r

�

� S

2

!

; r

�

� z(t)

	

; (4)

= [

t2R

�

ftg�℄z(t);+1[

r

�

�S

2

!

�

:

Following the general geometrial disussion about the same problem in [2℄ and [4℄, the reasonable as-

sumptions of generi ollapse lead to the following properties for z(t):

z 2 C

2

(R); 8t 2 R; � 1 < _z(t) � 0; (5)

z(t) = �t� C

�

0

e

�2�

0

t

+$(t); C

�

0

> 0; j$(t)j + j _$(t)j = O

�

e

�4�

0

t

�

; t! +1: (6)

We suppose the star stationary in the past. Moreover, we arbitrarily hoose  in (2), suh that for all

t � 0,

z(t) = z(0) < 0:

If we onsider ray of light leaving x

0

at t = 0, with z(0) � x

0

< 0, then �(x

0

) is the time where the ray

is reeted by the surfae of the star,

S :=

[

t2R

f(t; z(t))g � S

2

!

;

suh that �(x

0

) is the unique solution of

z(�(x

0

)) + �(x

0

) = x

0

: (7)

Thanks to the property (6), we have also (see [1℄):

�(x

0

) = �

1

2�

0

ln(�x

0

) +

1

2�

0

ln(C

�

0

) +O(x

0

); x

0

! 0

�

; C

�

0

> 0; (8)

1 + _z(�(x

0

)) = �2�

0

x

0

+O(x

2

0

); x

0

! 0

�

: (9)

3 The Dira equation.

For the spin 1/2 partiles with real harge q and mass m > 0, the Dira equation on (M

oll

; g), has the

general form (see and [4℄ and [22℄)

"

i

0

p

F

�

�

t

+ i

qQ

r

�

+

i

1

p

F

 

�

r

�

+

F

r

+

F

0

4

!

+

i

2

r

�

�

�

+

1

2

ot �

�

+

i

3

r sin �

�

'

�m

#

	 = 0 (10)

where the Dira matries 

k

, satisfy



a



b

+ 

b



a

= 2�

ab

I

I

I

R

4

; a; b = 0; ::; 3; �

ab

= Diag(1;�1;�1;�1): (11)



0

= i

�

0 �

0

��

0

0

�

; 

k

= i

�

0 �

k

�

k

0

�

k = 1; 2; 3; (12)
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with the Pauli matries,

�

0

=

�

1 0

0 1

�

; �

1

=

�

1 0

0 �1

�

; �

2

=

�

0 1

1 0

�

; �

3

= i

�

0 �1

1 0

�

: (13)

On the star surfae, we put the following boundary ondition, written for (t; r

�

; !) 2 S, as

n

j



j

	(t; r

�

; !) = B	 (14)

where n

j

is the outgoing normal of subset of R

t

�R

r

�

�S

2

!

and B some operator loal in time, rotationally

invariant and whih onserves the L

2

norm. We hoose B suh that (14) forms a family indexed by a

parameter � of non equivalent boundary onditions: the generalized MIT boundary ondition (see [6℄),

B

�

MIT

de�ned by

B

�

MIT

:= ie

i�

5

	(t; r

�

; !); 

5

:= �i

0



1



2



3

= diag(1; 1;�1;�1) (15)

where the parameter � is the hiral angle. We suppose that � 2 R if m > 0 with r

+

< +1, and

� 6= (2k + 1)�, k 2 Z if m > 0 with r

+

= +1. We introdue the Hilbert spaes:

L

2

t

:= L

2

(℄z(t);+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

; L

2

BH

:= L

2

(R

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

: (16)

The norms of these spaes are denoted by k:k

t

and k:k. Moreover for � 2 L

2

t

,

k�k

t

= k[�℄

L

k ; [�℄

L

(r

�

; !) =

�

�(r

�

; !) r

�

2℄z(t);+1[

r

�

0 r

�

2 Rn℄z(t);+1[

r

�

:

Hene, respetively, on (M

oll

; g) and on (M

bh

; g), we onsider the hyperboli mixed problems:

�

t

	 = iD

t

	; z(t) < r

�

; (17)

_z

0

� 

1

p

1� _z

2

	(t; z(t)) = ie

i�

5

	(t; z(t)) (18)

	(t = s; :) = 	

s

(:) 2 L

2

s

; (19)

and

�

t

	 = iD

BH

	 (20)

	(t = 0; :) = 	

BH

(:) 2 L

2

BH

; (21)

with, D

t

de�ned on L

2

t

and D

BH

de�ned on L

2

BH

, suh that:

D

t

;D

BH

= �

qQ

r

+ �

1

 

�

r

�

+

F (r)

r

+

F

0

(r)

4

!

+

p

F (r)

�

�

2

r

(�

�

+

1

2

ot �) +

�

3

r sin �

�

'

+ �

4

�

; (22)

�

1

:= i

0



1

= iDiag(�1; 1; 1;�1); �

2

:= i

0



2

; �

3

:= i

0



3

; �

4

:= �m

0

; (23)

D(D

t

) =

�

	 2 L

2

t

; D

t

	 2 L

2

t

;

_z

0

� 

1

p

1� _z

2

	(z(t); !) = ie

i�

5

	(z(t); !)

�

(24)

and

D(D

BH

) =

�

	 2 L

2

BH

; D

BH

	 2 L

2

BH

	

: (25)

Proposition III.2 in [4℄ gives the solution 	(t) of the hyperboli problem (17), (18) and (19) expressed

with the propagator U (t; s):
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Proposition 3.1

Given 	

s

2 D(D

s

), there exists [	(:)℄

L

= [U (:; s)	

s

℄

L

2 C

1

(R

t

;L

2

BH

) solution of (17), (18) and (19)

suh that, for all t 2 R

	(t) 2 D(D

s

):

Moreover,

k	(t)k

t

= k	

s

k

s

and U (t; s) an be extended in an isometri strongly ontinuous propagator from L

2

s

onto L

2

t

.

For the eternal blak-hole, we have (see theorem 4.1 in [17℄):

Proposition 3.2

D

BH

is a densely de�ned self-adjoint operator on L

2

BH

, hene the Cauhy problem (20) (21) has a unique

solution 	 2 C

0

(R

t

;L

2

BH

), given by the strongly ontinuous unitary group U (t) := e

itD

BH

:

	(t) = U (t)	

BH

; 	(0) = 	

BH

; k	(t)k = k	

BH

k:

4 Sattering by an eternal blak-hole

Sine the Hawking e�et arises from an asymptoti study of the �elds, we de�ne the wave operators for

the eternal harged blak-hole. Near the blak-hole horizon (resp. near the osmologial horizon when

� 6= 0), we ompare the solution of (20) on L

2

BH

with the solution of

�

t

	

 

= iD

 

	

 

�

resp: �

t

	

!

=D

�;!

	

!

�

where

D

 

:= �

1

�

r

�

�

qQ

r

0

�

resp: D

�;!

:= �

1

�

r

�

�

qQ

r

+

�

is self-adjoint on

L

2

 

:= L

2

(R

r

�

� S

2

!

; dr

�

d!)

4

; (resp: L

2

�;!

:= L

2

 

; � > 0);

with the dense domain

D(D

 

) = H

1

(R

r

�

;L

2

(S

2

!

))

4

�

resp: D(D

�;!

) = H

1

(R

r

�

;L

2

(S

2

!

))

4

�

:

Thanks to the form of �

1

, we de�ne the subspaes of outgoing and inoming waves L

2+

 

and L

2�

 

suh

that L

2

 

= L

2+

 

�L

2�

 

,

L

2+

 

:= f	 2 L

2

 

; 	

2

= 	

3

= 0g; L

2�

 

:= f	 2 L

2

 

; 	

1

= 	

4

= 0g; (26)

L

2

�;!

= L

2+

�;!

�L

2�

�;!

; L

2+

�;!

:= L

2+

 

; L

2�

�;!

:= L

2�

 

:

We introdue for the two asymptoti regions, respetively the identifying operator between L

2

 

and L

2

BH

and the one between L

2

�;!

and L

2

BH

:

J

 

: 	

�

(r

�

; !) 7! �

 

(r

�

)r

�1

F

�1=4

(r)	

�

(r

�

; !); 	

�

2 L

2�

 

;

J

�;!

: 	

�

(r

�

; !) 7! �

!

(r

�

)r

�1

F

�1=4

(r)	

�

(r

�

; !); 	

�

2 L

2�

�;!

;

where �

 

and �

!

are ut-o� funtions,

�

 

2 C

1

(R

r

�

); 9 a; b 2 R; 0 < a < b < 1 �

 

(r

�

) =

�

1 r

�

< a

0 r

�

> b

; �

!

= 1� �

 

: (27)
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If � > 0, we de�ne the wave operators W

�

 

at the blak-hole horizon and W

�

�;!

at the osmologial

horizon, by

W

�

 

	

�

= lim

t!�1

U (�t)J

 

e

itD

 

	

�

in L

2

BH

; 	

�

2 L

2�

 

; (28)

W

�

�;!

	

�

= lim

t!�1

U (�t)J

�;!

e

itD

�;!

	

�

in L

2

BH

; 	

�

2 L

2�

�;!

: (29)

When � = 0, the spae-time is asymptotially at at the in�nity. Hene, we ompare the solutions of (17)

on L

2

BH

with the solution 	

!

of the Dira equation on Minkowski spae-time with spherial oordinates

(�; !) 2 R

+

�

� [0; �℄� [0; 2�[, putting r

�

= � > 0 to avoid arti�ial long-range interations :

�

t

	

!

= iD

0;!

	

!

where

D

0;!

:= �

1

�

�

�

+

1

�

�

+

�

2

�

(�

�

+

1

2

ot �) +

�

3

� sin �

�

'

+ �

4

;

is self-adjoint on

L

2

0;!

:= L

2

(R

+

�

� S

2

!

; �

2

d�d!)

4

with the dense domain

D(D

0;!

) = H

1

(R

+

�

� S

2

!

; �

2

d�d!)

4

:

We de�ne the Dira operator with Cartesian oordinates

�

D

0;!

on L

2

(R

3

x

)

4

, with the help of the isometry

T between L

2

(R

3

x

)

4

and L

2

0;!

, suh that :

T :

�

	(x) 7! 	(�; !) = T

�

	(x); T = e

'

2



1



2

e

�

�

4



2



3

e

(

�

2

�

�

4

)



1



2

TD

0;!

T

�1

=

�

D

0;!

= �:p

p

p+m�; � = i(�

1

;�

2

;�

3

); � = �

0

; p

p

p = �ir:

The previous omparison involves long-range perturbations due to the mass and the harge. Then, as in

[17℄ and [19℄, we onstrut the Dollard-modi�ed propagator U

0;!

(t) :

U

0;!

(t) := T u(t)T

�1

; u(t) := e

it�(p

p

p)

e

iX

+

(t)

P

0

+

+ e

�it�(p

p

p)

e

iX

�

(t)

P

0

�

; (30)

X

�

(t) := �m

2

M

log(t)

ju

u

u(p

p

p)j�(p

p

p)

� qQ

log(t)

ju

u

u(p

p

p)j

; �(p

p

p) :=

p

jp

p

pj

2

+m

2

; u

u

u(p

p

p) := p

p

p=�(p

p

p);

log(t) := tjtj

�1

ln jtj; P

0

�

:= 1=2(1�

�

D

0;!

=�(p

p

p)):

We de�ne the bounded identifying operator J

0;!

between L

2

0;!

and L

2

BH

:

(J

0;!

	)(r

�

; !) :=

�

�

!

(� = r

�

)r

�1

F

�1=4

(r)r

�

	(� = r

�

; !) r

�

> 0

0 r

�

� 0

; 8	 2 L

2

0;!

;

and in the ase of � = 0 the wave operatorW

�

0;!

at in�nity, for all 	 2 L

2

0;!

:

W

�

0;!

	 = lim

t!�1

U (�t)J

0;!

U

0;!

(t)	 in L

2

BH

; (31)

Then, we state the theorem whih is proved in the last part of this work:

Theorem 4.1

The operators W

�

 

, W

�

�;!

and W

�

0;!

, respetively on L

2�

 

, L

2�

�;!

and L

2

0;!

exist and are independent of

�

 

, �

!

and �

!

satisfying (114). Moreover :

kW

�

 

	

�

k = k	

�

k

L

2

 

; 8	

�

2 L

2�

 

; (� � 0; m � 0);

kW

�

�;!

	

�

k = k	

�

k

L

2

�;!

; 8	

�

2 L

2�

�;!

; (� > 0; m � 0);

kW

�

0;!

	k = k	k

L

2

0;!

; 8	 2 L

2

0;!

; (� = 0; m > 0);

6



and

Ran

�

W

�

 

�W

�

�;!

�

= L

2

BH

; (� � 0):

5 Dira Quantum Field and Hawking e�et

5.1 Seond quantization of the Dira �elds

We de�ne the framework of the Quantum Field Theory to desribe the Hawking e�et. We use the

approah of the algebras of loal observables on urved spae-time introdued by J. Dimok in [8℄ and [9℄.

First, we de�ne the Fermi-Dira Fok spae whih desribes the state with an arbitrary number of non

interating harged fermions. Given, (H; < :; : >

H

) a omplex Hilbert spae and � the harge onjugation

(see [24℄ setion 1.4.6), then we split H into two orthogonal spetral subspaes

H = H

+

� H

�

; H

+

:= P

+

H; H

�

:= P

�

H; (32)

where, P

+

and P

�

are the spetral projetors on positive and negative subspaes. We de�ne, F

(1)

(H

+

)

and F

(1)

(H

�

), respetively the one partile spae and the one anti-partile spae suh that

F

(1)

(H

+

) := H

+

; F

(1)

(H

�

) := �H

�

: (33)

To treat various numbers of partiles and anti-partiles, we reall the de�nition of the Fermi-Dira Fok

spae:

F(H) :=

+1

M

n;m=0

F

(n;m)

; F

(n;m)

(H) := F

(n)

(H

+

)
 F

(m)

(H

�

); (34)

where

F

(0)

(H

+

) := C ; F

(0)

(H

�

) := C ; F

(n)

(H

+

) :=

n

^

k=1

H

+

; F

(m)

(H

�

) :=

m

^

k=1

�H

�

: (35)

An element  of F(H) onsists of sequene  = ( 

(n;m)

)

n;m2N

, with  

(n;m)

2 F

(n;m)

(H). The vauum

vetor is the vetor 


va

2 F(H) satisfying

(n;m) = (0; 0)) 


(0;0)

va

= 1; (n;m) 6= (0; 0)) 


(n;m)

va

= 0: (36)

We de�ne the quantized Dira �eld operator 	

	

	 and its adjoint 	

	

	

�

:

f 2 H 7�!	

	

	(f) := a(P

+

f) + b

�

(�P

�

f) 2 L(H);

f 2 H 7�!	

	

	

�

(f) := a

�

(P

+

f) + b(�P

�

f 2 L(H);

where a(P

+

f), a

�

(P

+

f), b(P

�

f), b

�

(P

�

f) are respetively the partile annihilation, reation operators

and the anti-partile annihilation, reation operators. The quantized Dira �eld is an anti-linear and

bounded operator and, thanks to the lassial properties of the reations and annihilations operators, it

satis�es the anonial anti-ommutation relations (CAR). We onsider the C

�

-algebra U(H) generated by

the �eld operators 	

	

	

�

(f)	

	

	(g), with f; g 2 H. For an observable A 2 U(H), we de�ne the vauum state

as !

va

(A) :=< A


va

;


va

>

H

. Then, by straightforward omputation and for f; g 2 H, we have

!

va

(	

	

	

�

(f)	

	

	(g)) =< P

�

f; g >

H

: (37)
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Given a Dira-type equation, with Hamiltonian H , satis�ed by the one partile �eld f

D

:

�

t

f

D

= iH f

D

;

we hoose the spetral projetors P

+

and P

�

suh that

P

+

:= 1

℄�1;0℄

(H ); P

�

:= 1

[0;+1[

(H ): (38)

On U(H), we also introdue the KMS state !

Æ;�

KMS

depending on � > 0 and Æ 2 R, suh that for f; g 2 H:

!

Æ;�

KMS

(	

	

	

�

(f)	

	

	(g)) :=< �e

�H

(1 + �e

�H

)

�1

f; g >

H

; � := e

�Æ

: (39)

The restrition of this KMS state to the sub-algebra U(H

+

) (resp. U(H

�

)) of U(H), orresponds to the

Gibbs equilibrium state desribing the thermodynami models for noninterating Fermi partiles (resp.

anti-partiles) with temperature �

�1

> 0 and hemial potential Æ (resp. �Æ).

As J. Dimok [9℄, we onstrut the algebra of loal observables in the spae-time outside the ollapsing

star, with the help of a given CAR representation on a Cauhy hyper-surfae. In fat this onstrution

does not depend on the hoie of the CAR representation, the spin struture and the hyper-surfae.

Then, in partiular, we onsider the Fermi-Dira Fok representation and the following foliation of the

globally hyperboli manifold:

M

oll

=

[

t2R

�

t

; �

t

:= ftg�℄z(t);+1[

r

�

�S

2

!

:

We onsider �

0

, and we put

H := L

2

(℄z(0);+1[�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

= L

2

0

; H :=D

0

(40)

Using the previous de�nition of Dira quantum �eld, we de�ne on L

2

0

the quantized Dira �eld 	

	

	

0

and

U(H) the C

�

-algebra generated by 	

	

	

�

0

(�

1

)	

	

	

0

(�

2

), with �

1

;�

2

2 H. We introdue the following operator

S

oll

: � 2 C

1

0

(M

oll

)

4

7�! S

oll

� :=

Z

R

U (0; t)�(t)dt 2 L

2

0

; (41)

where U (0; t) is the propagator de�ned in proposition 3.1. Then, we de�ne the loal quantum �eld in

M

oll

by the operator:

	

	

	

oll

: � 2 C

1

0

(M

oll

)

4

7�! 	

	

	

oll

(�) := 	

	

	

0

(S

oll

�); (42)

and, for any open set O � M

oll

, we introdue U(O) the C

�

-algebra generated by 	

	

	

�

oll

(�

1

)	

	

	

oll

(�

2

),

supp(�

j

) � O, j = 1; 2. Finally, we have:

U(M

oll

) = adh

 

[

O

U(O)

!

:

Then, thanks to (37), (38) and (40), we de�ne on U(M

oll

) a ground state !

M

oll

as following:

!

M

oll

(	

	

	

�

oll

(�

1

)	

	

	

oll

(�

2

)) := !

va

(	

	

	

�

0

(S

oll

�

1

)	

	

	

0

(S

oll

�

2

)); �

1

;�

2

2 H (43)

=< 1

[0;+1[

(D

0

)S

oll

�

1

; S

oll

�

2

>

H

We desribe the quantum �eld at the horizon of future bak-hole. We onsider the stationary spae-time

M

bh

with the assoiated Dira Hamiltonian D

 

for the one partile �eld. Using the Fermi-Dira Fok

quantization on R

r

�

� S

2

!

, we de�ne the �eld 	

	

	

�

(�) with � 2 L

2

 

, and the operator S

 

suh that

S

 

: � 2 C

1

0

(M

bh

)

4

7�! S

 

� :=

Z

R

e

�itD

 

�(t)dt: (44)
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We also introdue

	

	

	

 

: � 2 C

1

0

(M

bh

)

4

7�!	

	

	

 

(�) := 	

	

	

�

(S

 

�); (45)

and the C

�

-algebra U

 

(M

bh

) generated by 	

	

	

 

(	

1

)	

	

	

�

 

(	

2

), �

1

;�

2

2 L

2

 

. Using (39), we onsider the

Hawking thermal state:

!

Æ;�

Haw

(	

	

	

�

 

(�

1

)	

	

	

 

(�

2

)) := !

Æ;�

KMS

(	

	

	

�

�

(S

 

�

1

)	

	

	

�

(S

 

�

2

)); �

1

;�

2

2 C

1

0

(M

bh

)

4

(46)

=< �e

�D

 

(1 + �e

�D

 

)

�1

S

 

�

1

; S

 

�

2

>

L

2

 

; (47)

with

� := e

�Æ

; Æ 2 R; � > 0: (48)

Now, we desribe the quantum �eld at the spatial in�nity of the future blak-hole. Aording to � whih

is respetively positive or zero (osmologial horizon or asymptotially at spae-time), we onsider the

stationary spae-times M

bh

or M

flat

:= R

t

� R

+

r

�

� S

2

!

, with the Dira Hamiltonian assoiated to a one

partile �eldD

�;!

andD

0;!

. As above, using the Fermi-Dira Fok quantization on R

r

�

�S

2

!

or R

+

r

�

�S

2

!

,

we de�ne the �elds 	

	

	

�;+

(�

1

) with �

1

2 L

2

�;!

or 	

	

	

0;+

(�

1

) with �

1

2 L

2

0;!

and the operators S

�;!

or S

0;!

haraterized by:

S

�;!

: � 2 C

1

0

(M

bh

)

4

7�! S

�;!

� :=

Z

R

e

�itD

�;!

�(t)dt; � > 0; (49)

S

0;!

: � 2 C

1

0

(M

flat

)

4

7�! S

0;!

� :=

Z

R

U

0;!

(�t)�(t)dt; (50)

where U

0;!

is the Dollard-modi�ed propagator given by formula (30). Then, we onstrut the C

�

-

algebras U

!

(M

bh

) and U

!

(M

flat

), respetively generated by 	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

) with �

1

; �

2

2 L

2

�;!

and 	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

) with �

1

;�

2

2 L

2

0;!

, where

	

	

	

�;!

: � 2 C

1

0

(M

bh

)

4

7�! 	

	

	

�;!

(�) := 	

	

	

�;+

(S

�;!

�); � > 0; (51)

	

	

	

0;!

: � 2 C

1

0

(M

flat

)

4

7�! 	

	

	

0;!

(�) := 	

	

	

0;+

(S

0;!

�): (52)

With (37), the vauum states on eah algebras U

!

(M

bh

) and U

!

(M

flat

) are given by

!

va

(	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

)) =< P

�

�

S

�;!

�

1

; S

�;!

�

2

>

L

2

�;!

; � > 0; (53)

�

1

;�

2

2 C

1

0

(M

bh

); P

�

�

:= 1

[0;1[

(D

�;!

); (54)

!

va

(	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

)) =< P

0

�

S

0;!

�

1

; S

0;!

�

2

>

L

2

0;!

; (55)

�

1

;�

2

2 C

1

0

(M

flat

); P

0

�

:= 1

[0;1[

(D

0;!

): (56)

Sine we are interested in the state of the quantum �eld at the last moment of gravitational ollapse, we

investigate the following limit:

lim

T!+1

!

M

oll

(	

	

	

�

oll

(�

T

1

)	

	

	

oll

(�

T

2

));

where

�

T

j

(t; r

�

; !) := �

j

(t� T; r

�

; !); �

j

2 C

1

0

(M

oll

)

4

; j = 1; 2;

and, !

M

oll

and 	

	

	

oll

are de�ned by (43) and (42). Then, we state the main theorem of this work
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Theorem 5.1 (Main result)

Given �

j

2 C

1

0

(M

oll

)

4

; j = 1; 2, then we have for � � 0,

lim

T!+1

!

M

oll

(	

	

	

�

oll

(�

T

1

)	

	

	

oll

(�

T

2

)) = !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))

+ !

va

(	

	

	

�

�;!

(


�

�;!

�

1

)	

	

	

�;!

(


�

�;!

�

2

));

with

T

Haw

=

1

�

=

2�

�

0

; Æ =

qQ

r

0

:

Proof of theorem 5.1 :

For � 2 C

1

0

(M

oll

)

4

, by the identity of polarization, it is suÆient to evaluate

lim

T!+1

!

M

oll

(	

	

	

�

oll

(�

T

)	

	

	

oll

(�

T

)) = lim

T!+1





1

[0;+1[

(D

0

) S

oll

�

T





2

0

;

= lim

T!+1





1

[0;+1[

(D

0

) U (0; T )S

bh

�





2

0

; (57)

beause for T > 0 large enough, we have:

S

oll

�

T

= U (0; T )S

bh

�; S

bh

� :=

Z

R

U (�t)�(t)dt:

Then, we use the key theorem that we prove in the next setion:

Theorem 5.2

Given f 2 L

2

BH

, if � � 0, then

lim

T!+1





1

[0;+1[

(D

0

) U (0; T )f





2

0

=







1

[0;+1[

(D

�;!

)


�

�;!

f







2

L

2

�;!

+ < 


�

 

f; �e

�D

 

�

1 + �e

�D

 

�

�1




�

 

f >

L

2

 

(58)

with

� = e

�Æ

; Æ :=

qQ

r

0

� =

2�

�

0

; 


�

 

:=

�

W

�

 

�

�

; 


�

�;!

:=

�

W

�

�;!

�

�

; 


�

0;!

:=

�

W

�

0;!

�

�

;

where W

�

 

, W

�

�;!

, W

�

0;!

are the wave operators respetively de�ned in (28), (29) and (31).

Aording to (57) and the previous theorem, for � � 0, we dedue that :

lim

T!+1

!

M

oll

(	

	

	

�

oll

(�

T

)	

	

	

oll

(�

T

)) =







1

[0;+1[

(D

�;!

)


�

�;!

S

bh

�







2

L

2

�;!

;

+ < 


�

 

S

bh

�; �e

�D

 

�

1 + �e

�D

 

�

�1




�

 

S

bh

� >

L

2

 

=







1

[0;+1[

(D

�;!

)S

�;!




�

�;!

�







2

L

2

�;!

;

+ < S

 




�

 

�; �e

�D

 

�

1 + �e

�D

 

�

�1

S

 




�

 

� >

L

2

 

= !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))

+ !

va

(	

	

	

�

�;!

(


�

�;!

�)	

	

	

�;!

(


�

�;!

�)):
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5.2 Disussion

The interpretation of the previous theorem in terms of partiles is more diÆult. Indeed, there are as

many de�nitions of partiles as types of observators. In the Minkowski spae time and thanks to the

Lorentz transformations, we naturally de�ne the partiles linked to the inertial observators. For the

general urved spae-times, we have not the similar transformations and the notion of partiles is rather

vague. In Theorem 5.1, the state !

M

oll

(	

	

	

�

oll

(�

T

)	

	

	

oll

(�

T

)) gives informations at the time T of a detetor

�xed with the respet to the variables (r

�

; !) measuring the utuation of the quantum �eld outside the

ollapsing star. The detetor is put in the Boulware vauum that orresponds to the lassial onept of

vauum state for a stati observer. This last theorem gives the response of the detetor at their own in�nite

proper time (T = +1), whih orresponds to the last moments of gravitational ollapse. On the hand,

the term !

va

(	

	

	

�

�;!

(


�

�;!

�

1

)	

	

	

�;!

(


�

�;!

�

2

)) proves that the detetor measures merely a vauum oming

from the past in�nity and falling into the blak hole. On the other hand, !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))

orresponds to the emergene of a thermal state at temperature T

Haw

oming from the viinity of the

blak hole. An observer at rest with respet to oordinates (r

�

; !) will interpret as t! +1 this thermal

state like a ux of fermioni and anti-fermionis partiles leaving the future blak hole. The result is

independent of the history of the ollapse and the boundary ondition on the star surfae. Indeed, we

an easily prove the same theorem putting the more general MIT Bag boundary ondition (see [4℄):

B := i

X

(ln)2I

e

i�

l;n



5

P

ln

where P

ln

is the orthogonal L

2

(S

2

!

)-projetor on V et(Y

ln

), (see (68)) and �

l;n

a sequene whih satis�es

the same onditions as � in the third setion about the MIT Bag boundary ondition. Moreover, for a

Lebesgue measurable subset B of R

r

�

� S

2

!

with 0 < jBj < +1, lemma A.2 in [4℄ gives respetively the

expression of the density of partiles D

+

B

(!

Æ;�

KMS

), of antipartiles D

�

B

(!

Æ;�

KMS

) and the harge density �

Haw

for the gas of fermions reate at the viinity of the blak-hole horizon in the subset B:

D

+

B

(!

Æ;�

KMS

) := B

�1

X

!

Æ;�

KMS

(a

�

(P

+

 

�

j

)a(P

+

 

�

j

)) =

1

��

ln(1 + e

�Æ

); (59)

D

�

B

(!

Æ;�

KMS

) := B

�1

X

!

Æ;�

KMS

(a

�

(P

�

 

�

j

)a(P

�

 

�

j

)) =

1

��

ln(1 + e

��Æ

); (60)

P

+

 

:= 1

℄�1;0℄

(D

 

); P

�

 

:= 1

[0;+1[

(D

 

); (61)

�

Haw

:= q

�

D

+

B

(!

Æ;�

KMS

) +D

�

B

(!

Æ;�

KMS

)

�

=

1

�

qÆ =

q

2

Q

�r

0

; (62)

where (�

j

)

j2N

is an orthonormal basis of fS

 




�

 

� 2 L

2

BH

: (r

�

; !) =2 B ) S

 




�

 

�(r

�

; !) = 0g. Sine

�

Haw

and Q have the same sign, we onlude that the blak-hole preferentially emits harged partiles

with the same sign as its own harge.

We emphasize that the interpretation of theorem 5.1 is valid only in semilassial regime. Indeed,

we suppose that the blak hole that we onsider has a suÆiently large mass in order to be able to use

the lassial theory of General Relativity to model the gravitational �eld but also to neglet the bak

reation of the quantum �elds. Thanks to theorem 5.1, we an onjeture that the blak hole loses its

harge and its mass. Therefore, if we want to study this evaporation, we an not neglet the bak reation

of the Hawking e�et. But for that, it would be neessary to study a non linear problem of a very great

omplexity.

6 Proofs of the main theorems.

This setion is organized as follow: in the �rst subpart, thanks to the spherial symmetry property of the

geometrial framework, we redue (17) and (20) to a family of one dimensional problems. This redution

11



will be useful for the next subparts. In the seond part, we prove theorem 4.1 on the sattering theory

in the eternal harged blak-hole. In the third part, we demonstrate theorem 5.2 on the sharp estimate

of 1

[0;+1[

(D

0

)U (0; T ).

6.1 Redution to a one dimensional problem.

To redue problems (17) and (20), we use spin-weighted harmonis Y

l

�

1

2

;n

(see [12℄, [17℄). The families

n

Y

l

1

2

;n

; (l; n) 2 I

o

;

n

Y

l

�

1

2

;n

; (l; n) 2 I

o

; I :=

�

(l; n) : l�

1

2

2 N; l� jnj 2 N

�

;

form a Hilbert basis of L

2

(S

2

!

) and eah Y

l

sn

, s = �1=2 satis�es the reurrene relations,

�

�

Y

l

sn

(!)�

n� s os �

sin �

Y

l

sn

(!) =

�

�

�

�

�i

p

(l � s)(l � s+ 1)Y

l

s�1;n

(!); �l > �s:

0; l = �s:

; (63)

�

'

Y

l

sn

(!) = �inY

l

sn

(!): (64)

We introdue the Hilbert spaes to treat the one dimensional problem respetively outside, the harged

ollapsing star and the eternal blak hole:

0 � t; L

2

t

:= L

2

(℄z(t);+1[

r

�

; dr

�

)

4

; L

2

R

:= L

2

(R

r

�

; dr

�

)

4

; L

2

BH

:= L

2

(R

r

�

; r

2

F

1=2

(r)dr

�

)

4

: (65)

The norm of L

2

t

and L

2

R

are respetively denoted by k:k

t

and k:k. Moreover for � 2 L

2

(B; dr

�

)

4

, B � R,

k�k

L

2

(B; dr

�

)

4

= k[�℄

L

k ; [�℄

L

(r

�

) :=

�

�(r

�

) r

�

2 B

0 r

�

2 R nB

:

In the same way, we de�ne

0 � t; H

1

t

:=

�

� 2 L

2

t

; �

r

�

� 2 L

2

t

	

; H

1

R

:=

�

� 2 L

2

R

; �

r

�

� 2 L

2

R

	

;

and moreover for � 2 H

1

t

we have,

[�℄

H

2 H

1

R

; [�℄

H

(r

�

) :=

�

�(r

�

) r

�

2℄z(t);+1[

r

�

�(2z(t)� r

�

) r

�

2 Rn℄z(t);+1[

r

�

:

Hene, for 0 � t � +1, and putting

P

r

: 	 7! r

�1

F

�1=4

	; (66)

any 	 2 L

2

t

or L

2

BH

, where 	

ln

2 P

r

L

2

t

or P

r

L

2

R

an be written in the following way:

	(r

�

; !) =

X

(l;n)2I

	

ln

(r

�

)


4

Y

ln

(!); (67)

v 


4

u := (u

1

v

1

; u

2

v

2

; u

3

v

3

; u

4

v

4

); 8u; v 2 C

4

;

Y

ln

:=

�

Y

l

�

1

2

;n

; Y

l

1

2

;n

; Y

l

�

1

2

;n

; Y

l

1

2

;n

�

: (68)

We de�ne,

R

�

ln

: 	 2 L

2

t

7! e

i

�

2



5

P

�1

r

	

ln

2 L

2

t

; (69)

R

BH

ln

: 	 2 L

2

BH

7! 	

ln

2 P

r

L

2

R

(70)

E

�

ln

: 	

ln

2 L

2

t

7! e

�i

�

2



5

P

r

	

ln




4

Y

ln

2 L

2

t

; (71)

E

BH

ln

: 	

ln

2 P

r

L

2

R

7! 	

ln




4

Y

ln

2 L

2

BH

: (72)
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to express L

2

t

and L

2

BH

as a diret sum:

L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

; L

2

BH

=

M

(l;n)2I

E

BH

ln

L

2

BH

=

M

(l;n)2I

E

�

ln

L

2

R

: (73)

With (63), (64) and s = �1=2, we obtain

D

t

=

M

(l;n)2I

E

�

ln

D

V

l;�

;t

R

�

ln

�

qQ

r

0

; (74)

D

V

l;�

;t

:= �

1

�

r

�

+ V

l;�

; V

l;�

= qQ

�

1

r

0

�

1

r

�

�

p

F (r)

�

mA

�

+

i

r

�

2

(l + 1=2)

�

; (75)

A

�

:=

�

0 a

�

�a

�

0

�

; a

�

:= diag(ie

i�

; ie

i�

); Z(t) =

s

1� _z(t)

1 + _z(t)

; (76)

D(D

V

l;�

;t

) =

�

	 2 L

2

t

; D

V

l;�

;t

	 2 L

2

t

;

Z(t)	

2

(z(t)) = 	

4

(z(t)); 	

1

(z(t)) = �Z(t)	

3

(z(t))g (77)

and

D

BH

=

M

(l;n)2I

E

BH

ln

D

BH

R

BH

ln

; D

BH

= �

1

�

�

r

�

+

F (r)

r

+

1

4

F (r)

�

+ V

BH

(78)

V

BH

= �

qQ

r

�

p

F (r)

�

i

r

�

2

(l + 1=2)� �

4

�

; (79)

D(D

BH

) =

�

	 2 L

2

BH

; D

BH

	 2 L

2

BH

	

: (80)

Therefore, 	 is solution of problem (17), (18) and (19) if and only if, for all (l; n) 2 I,

�(t; r

�

) := e

itqQr

�1

0

R

�

ln

	(t; r

�

)

is solution of

�

t

� = iD

V

l;�

;t

�; t 2 R; r

�

> z(t); (81)

Z(t)�

2

(t; z(t)) = �

4

(t; z(t)); � Z(t)�

3

(t; z(t)) = �

1

(t; z(t)); (82)

�(t = s; :) = �

s

(:) := R

�

ln

	

s

(:) 2 L

2

s

: (83)

In the same way, 	 is solution of problem (20) and (21) if and only if, for all (l; n) 2 I,

�(t; r

�

) := R

BH

ln

	(t; r

�

)

is solution of

�

t

� = iD

BH

�; (84)

�(t = 0; :) = �

BH

:= R

BH

ln

	

BH

2 L

2

BH

: (85)

In [4℄, proposition VI.2 gives a solution �(t) of the problem (81), (82) and (83) expressed with the

propagator U

V

l;�

(t; s):

Proposition 6.1

If �

s

2 D(D

V

l;�

;s

), then there exists a unique solution [�(:)℄

H

= [U

V

l;�

(:; s)�

s

℄

H

2 C

1

(R

t

; L

2

R

) \

C

0

(R

t

; H

1

R

) of (81), (82) and (83) :

�(t) 2 D(D

V

l;�

;t

):
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Moreover,

k�(t)k

t

= k�

s

k

s

(86)

and U

V

l;�

(t; s) an be extended in an isometri strongly ontinuous propagator from L

2

s

onto L

2

t

, and for

an R > z(s)

(x > R) �

s

(r

�

; !) = 0)) (x > R+ jt� sj ) [U

V

l;�

(t; s)�

s

℄(r

�

; !) = 0):

Thanks to the notations (69) and (71), we give the important relations onneting propagator U

V

(t; s)

with U (t; s) de�ned in proposition (3.1):

U (t; s) = e

i(s�t)

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

(t; s)R

�

ln

: L

2

s

=

M

(l;n)2I

E

�

ln

L

2

s

! L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

: (87)

Subsequently, to simplify the notations, we forget subsripts ln and � in the above one dimensional

problem. Given a interval B := (a; b) � R

r

�

and V 2 L

1

(R

r

�

), then, on L

2

(B)

4

we de�ne the self-

adjoint operator D

V;B

with the dense domain D(D

V;B

) suh that

D

V;B

= �

1

�

r

�

+ V; (88)

D(D

V;B

) =

�

� 2 L

2

(B)

4

; D

V;B

� 2 L

2

(B)

4

; r

�

2 �B ) ~n

1

�(r

�

) = i�(r

�

)

	

; (89)

where ~n is the outgoing normal of B and �

1

given by (23). Hene by the Kato-Rellih and spetral

theorem, the problem

�

t

� = iD

V;B

�; �(t = 0)	

0

; (90)

is solved with the help of the propagator U

V;B

(t), following the proposition:

Proposition 6.2

Given �

0

2 D(D

V;B

), then there exists a unique solution �(:) = U

V;B

(:)�

0

2 C

0

(R

t

;D(D

V;B

)) \

C

1

(R

t

; L

2

(B)

4

) and

k�(t)k = k�

0

k:

Moreover, U

V;B

(t) an be extended, by density and ontinuity, in strongly unitary group on L

2

(B)

4

.

In some useful partiular ases, we have an expliit formula:

Lemma 6.1

Given �

0

= (�

0

1

;�

0

2

;�

0

3

;�

0

4

) 2 L

2

s

for t � s, then �(t; r

�

) = U

0

(t; s)�

0

(r

�

) is given by

r

�

> z(t) : �

2

(t; r

�

) = �

0

2

(r

�

� t+ s); �

3

(t; r

�

) = �

0

3

(r

�

� t+ s);

r

�

> z(t) + s� t : �

1

(t; r

�

) = �

0

1

(r

�

+ t� s); �

4

(t; r

�

) = �

0

3

(r

�

+ t� s);

z(t) < r

�

< z(t) + s� t : �

1

(t; r

�

) = �Z(�(r

�

+ t))�

0

3

(r

�

+ t+ s� 2�(r

�

+ t));

z(t) < r

�

< z(t) + s� t : �

4

(t; r

�

) = Z(�(r

�

+ t))�

0

2

(r

�

+ t+ s� 2�(r

�

+ t));

where � is de�ned by (7). Given �

0

2 L

2

(B)

4

, with B =℄ �1; a℄ or [a;+1[, a 2 R [ f�1;+1g and

Æ 2 R, then, if B =℄�1; a℄, �(t; r

�

) = U

Æ;B

(t)�

0

(r

�

) is given by

�(t; r

�

) =

8

<

:

e

iÆt t

�

�

0

3

(2a� r

�

� t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);��

0

2

(2a� r

�

� t)

�

; r

�

+ t � a;

e

iÆt t

�

�

0

1

(r

�

+ t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);�

0

4

(r

�

+ t)

�

; r

�

+ t � a; r

�

� t � a;

e

iÆt t

�

�

0

1

(r

�

+ t);��

0

4

(2a� r

�

+ t);�

0

1

(2a� r

�

+ t);�

0

4

(r

�

+ t)

�

; r

�

� t � a;

and, if B = [a;+1[, by

�(t; r

�

) =

8

<

:

e

iÆt t

�

�

0

1

(r

�

+ t);�

0

4

(2a+ t� r

�

);��

0

1

(2a+ t� r

�

);�

0

4

(r

�

+ t)

�

; r

�

� t � a;

e

iÆt t

�

�

0

1

(r

�

+ t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);�

0

4

(r

�

+ t)

�

; r

�

� t � a; r

�

+ t � a;

e

iÆt t

�

��

0

3

(2a� r

�

� t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);�

0

2

(2a� r

�

� t)

�

; r

�

+ t � a:

Proof:

The result follows from the study of the harateristis of problems (81)-(82) and (84).
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6.2 Proof of theorem 4.1 on the sattering theory

Before proving theorem 4.1, we state the following proposition onerning the spetral properties of D

BH

and D

BH

.

Proposition 6.3

If � � 0, then

�(D

BH

) = �

a

(D

BH

) = R (91)

and

�(D

BH

) = �

a

(D

BH

) = R: (92)

with D

BH

and D

BH

given by (78)(80) and (22)(25).

Proof:

When � = 0 the properties (91) and (92) have been proved in [19℄. If � > 0 the proof remains essentially

similar. Prinipally, our demonstration in [19℄ bases one's argument on the Mourre theory and, in this

work, when � = 0, we wrote

�D

BH

= ��

1

�

r

�

+ V

q

+ V

l

+ V

m

V

q

:=

qQ

r

; V

l

:= �(l + 1=2)�

2

p

F (r)

i

r

; V

m

:=

p

F (r)�

4

= m

p

F (r)

0

:

The main diÆulty of this proof is the obtaining of Mourre inequality. To do this, we must hoose an

appropriate onjugate operator A. But, we remark that

lim

r

�

!�1

V

q

=

qQ

r

0

:

For the positive energies, when qQ < 0 (respetively for negative energies and qQ > 0), we obtain easily

this inequality if A is the lassial generator of dilations. But, when qQ > 0 (respetively qQ < 0), this

hoie of onjugate operator does not allows us to obtain the result. Indeed, if we put h = �D

BH

and

onsider the ase qQ > 0, then we obtain the following equality (in sense of the quadrati forms in H

1

R

):

�(h)i[h;A℄�(h) � ("� qQr

�1

)�

2

(h) + k; " > 0; A := �

i

2

(r

�

�

r

�

+ �

r

�

r

�

) ;

where k is a L

2

R

ompat operator and � 2 C

1

0

(R) suh that supp� � R

+

�

�fmg. Then, to overome the

problem, we put:

A := �

i

2

(r

�

�

r

�

+ �

r

�

r

�

) +

qQ

r

0



0



1

r

�

J

�

(r

�

); J

�

2 C

1

(R

r

�

); J

�

(r

�

) =

�

1 r

�

� �3

0 r

�

� �2

:

With this hoie, the Mourre assumptions are satis�ed and sine qQr

�1

0

� qQr

�1

� 0, we have:

�(h)i[h;A℄�(h) � ("+ qQr

�1

0

J

�

� qQr

�1

J

�

)�

2

(h) + k

0

� "�

2

(h) + k

0

;

with " > 0 and k

0

is a ompat operator on L

2

R

. When � > 0, the result beomes widespread. Indeed,

we put

e

h := h�

qQ

r

+

:

Then, for the diÆult ases, we de�ne

A := �

i

2

(r

�

�

r

�

+ �

r

�

r

�

) + qQ

�

1

r

0

�

1

r

+

�



0



1

r

�

J

�

(r

�

):
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Therefore, for qQ > 0 and supp� � R

+

�

� fmg, we obtain:

�(h)i[h;A℄�(h) � "�

2

(h) + qQJ

�

(r

�1

0

� qQr

�1

+

)�

2

(h)� qQJ

�

(r

�1

� qQr

�1

+

)�

2

(h) + k

00

� "�

2

(h) + k

00

; " > 0;

with " > 0 and k

00

is a L

2

R

-ompat operator on L

2

R

. To �nish, as in [4℄, we hek that D

BH

has no

eigenvalues when � � 0.

Proof of theorem 4.1:

The ase where � = 0 was proved in [19℄ and we onsider only the ase � > 0. Given two self-adjoint

operators A on H

A

and B on H

B

, we formally de�ne the wave operators

W

�

(A;B;J ) = s� lim

t!�1

e

�itA

J e

itB

P

a

(B); (93)

where P

a

(B) is the projetor on the absolutely ontinuous subspae of B and J the bounded identifying

operator between H

B

and H

A

. When H

A

= H

B

and J = Id, we denote W

�

(A;B; Id) simply by

W

�

(A;B). First, we separate the problems at the horizon and at in�nity. To do this, we use the

self-adjoint operator D

�

BH

�D

+

BH

on L

2

BH

, suh that :

D

�

BH

;D

+

BH

:= �

qQ

r

+ �

1

�

�

r

�

+

F (r)

r

+

1

4

F (r)

�

+

p

F (r)

�

�

2

r

(�

�

+

1

2

ot �) +

�

3

r sin �

�

'

+ �

4

�

;

D

�

D

�

BH

�

=

n

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

;

D

�

BH

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

; 

1

	(1; :) = i	(1; :)

o

;

D

�

D

+

BH

�

=

n

	 2 L

2

([1;+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

;

D

+

BH

	 2 L

2

([1;+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

;�

1

	(1; :) = i	(1; :)

o

:

Thanks to formula (78) we redue D

BH

on L

2

BH

by D

BH

on L

2

BH

. In the same way, via operators (70) and

(72), we an also redue D

�

BH

�D

+

BH

on L

2

BH

by the self-adjoint operator D

�

BH

� D

+

BH

with the dense

domain D (D

�

BH

) � D (D

+

BH

) = P

r

[D

�

D

V

BH

;℄�1;1℄

�

� D

�

D

V

BH

;[1;+1[

�

℄ using de�nitions (79), (88) and

(89). Sine

(D

BH

� i)

�1

� (D

�

BH

�D

+

BH

� i)

�1

is of �nite rank and thus trae lass on L

2

BH

, Birman-Kuroda theorem (see [23℄) assures that

W

�

�

D

BH

; D

�

BH

�D

+

BH

�

exists on L

2

BH

and

Ran

�

W

�

�

D

BH

; D

�

BH

�D

+

BH

��

= P

a

(D

BH

)L

2

BH

:

Therefore, the following wave operator

W

�

�

D

BH

;D

�

BH

�D

+

BH

�

=

M

(l;n)2I

E

BH

ln

W

�

�

D

BH

; D

�

BH

�D

+

BH

�

R

BH

ln

(94)

exists on L

2

BH

, and

Ran

�

W

�

�

D

BH

;D

�

BH

�D

+

BH

��

= P

a

(D

BH

)L

2

BH

: (95)

Now, as

jr � r

0

j � O

�

e

2�

0

r

�

�

r

�

! �1; jr � r

+

j � O

�

e

2�

+

r

�

�

r

�

! +1;
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we ompare respetively, the self-adjoint operatorsD

�

BH

andD

�

 

on L

2

(℄�1; 1℄

r

�

�S

2

!

)

4

with the dense

domain D(D

�

 

), given by

D

�

 

:= �

1

�

r

�

�

qQ

r

0

;

D(D

�

 

) =

�

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

;

D

�

 

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

; 

1

	(1; :) = i	(1; :)

	

;

and, the self-adjoint operators D

+

BH

and D

+

�;!

on L

2

([1;+1[

r

�

�S

2

!

)

4

with the dense domain D(D

+

�;!

),

given by

D

+

�;!

:= �

1

�

r

�

�

qQ

r

+

;

D(D

+

�;!

) =

�

	 2 L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

;

D

+

�;!

	 2 L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

; � 

1

	(1; :) = i	(1; :)

o

:

We introdue J

r

suh that

J

r

: 	(r

�

; !)! J

r

(	)(r

�

; !) = r

�1

F

�1=4

(r)	(r

�

; !) (96)

and we apply respetively lemma 4.11 in [19℄ to W

�

(J

�1

r

D

+

BH

J

r

;D

+

�;!

) on L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

and to W

�

(J

�1

r

D

�

BH

J

r

;D

�

 

) on L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

. Hene

W

�

(D

�

BH

;D

�

 

;J

r

)

�

resp: W

�

(D

+

BH

;D

+

�;!

;J

r

)

�

(97)

exists on L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

(resp. L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

), and

Ran

�

W

�

(D

�

BH

;D

�

 

;J

r

)

�

= P

a

(D

�

BH

)L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

(98)

�

resp: Ran

�

W

�

(D

+

BH

;D

+

�;!

;J

r

)

�

= P

a

(D

+

BH

)L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

�

: (99)

We introdue the operators J

�

�

and J

�

+

respetively as the adjoint of

J

�

: 	! J

�

	 =

�

�

�

	 r

�

� 1

0 r

�

� 1

; �

�

2 C

1

(R

r

�

); 9 a; b; a < b < 1; �

�

(r

�

) =

�

1 r

�

< a

0 r

�

> b

(100)

and

J

+

: 	! J

+

	 =

�

�

+

	 r

�

� 1

0 r

�

� 1

; �

+

2 C

1

(R

r

�

); 9 a; b; 1 < a < b; �

+

(r

�

) =

�

1 r

�

> b

0 r

�

< a

:

(101)

Sine D

�

 

on L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

and D

 

on L

2�

 

have spherial symmetry, we use lemma 6.1

whih gives the expliit alulation of the unitary group generated by these self-adjoint operators. Hene,

for all 	

0

2 C

1

0

(℄�1; 1℄

r

�

�S

2

!

)

4

and sine �

r

�

�

�

is ompatly supported and supp(�

2

�

� 1) � [a;+1[:







�

D

 

J

�

�J

�

D

�

 

�

e

itD

�

 

	

0







L

2

 

=







(�

r

�

�

�

) e

itD

�

 

	

0







L

2

(℄�1;1℄

r

�

�S

2

!

; dr

�

d!)

4

2 L

1

(R

t

);







�

J

�

�

J

�

� 1

�

e

itD

�

 

	

0







L

2

(℄�1;1℄

r

�

�S

2

!

; dr

�

d!)

4

! 0; t! �1:
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Therefore, by a standard density argument, the wave operator W

�

(D

 

;D

�

 

;J

�

) exists and is an isom-

etry on L

2

(℄�1; 1℄

r

�

�S

2

!

; dr

�

d!)

4

. Moreover, if we take 	 2 L

2�

 

\C

1

0

(R

r

�

�S

2

!

)

4

suh that, for real

R > 0, supp	

�

0

� [R+ 1;�R+ 1℄, we obtain for �T ? �R :

J

�

�

e

iTD

 

	

�

0

= e

�itD

�

 

J

�

�

e

i(T+t)D

 

	

�

0

8t 2 R;





�

J

�

J

�

�

� 1

�

e

itD

 

	

�

0





L

2

 

! 0; t! �1;

sine supp(�

2

�

� 1) � [a;+1[. Therefore, by density, the following wave operator

W

�

(D

�

 

;D

 

;J

�

�

) (102)

exists on L

2�

 

, and

Ran

�

W

�

(D

�

 

;D

 

;J

�

�

)

�

= P

a

(D

�

 

)L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

: (103)

Using again the lemma 6.1, whih gives the expliit alulation of the unitary group generated by the

self-adjoint operator D

+

 

on L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

, as above and in the same way, we dedue that

the wave operator :

W

�

(D

+

�;!

;D

�;!

;J

�

+

) (104)

exists on L

2�

�;!

, and

Ran

�

W

�

(D

+

�;!

;D

�;!

;J

�

+

)

�

= P

a

(D

+

�;!

)L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

: (105)

We de�ne the operators :

J

�

 

: L

2

(℄�1; 1℄

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

! L

2

BH

; 	 7! J

�

 

	 =

�

	 r

�

� 1

0 r

�

� 1

(106)

J

+

!

: L

2

([1;+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

! L

2

BH

; 	 7! J

+

!

	 =

�

	 r

�

� 1

0 r

�

� 1

; (107)

and the hain rule applied to (94)(95), (97)(99), (102)(103), (104)(105) assures that

W

�

(D

BH

;D

 

;J

�

 

J

r

J

�

�

)�W

�

(D

BH

;D

�;!

;J

+

!

J

r

J

�

+

)

exists on L

2�

 

� L

2�

�;!

. By proposition 6.3, the spetrum of D

BH

is purely absolutely ontinuous when

� > 0. Hene

Ran

�

W

�

(D

BH

;D

 

;J

�

 

J

r

J

�

�

)�W

�

(D

BH

;D

�;!

;J

+

!

J

r

J

�

+

)

�

= L

2

BH

:

Finally

W

�

 

�W

�

!

=W

�

(D

BH

;D

 

;J

�

 

J

r

J

�

�

)�W

�

(D

BH

;D

�;!

;J

+

!

J

r

J

�

+

) in L

2

BH

beause for all 	

�

2 L

2�

 

= L

2�

�;!





�

J

 

�J

�

 

J

r

J

�

�

	

e

itD

 

	

�





�





f�

 

� �

�

g e

itD

 

	

�





L

2

(℄�1;1℄

r

�

�S

2

!

; dr

�

d!)

4

! 0; t! �1; (108)







�

J

�;!

�J

+

!

J

r

J

�

+

	

e

itD

�;!

	

�







�







f�

!

� �

+

g e

itD

�;!

	

�







L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

! 0; t! �1:

(109)

Indeed, taking 	

�

2 L

2�

 

\ C

1

0

(R

r

�

� S

2

!

)

4

= L

2�

�;!

\ C

1

0

(R

r

�

� S

2

!

)

4

we have

e

itD

 

	

�

(r

�

) = e

itqQr

�1

0

	

�

(r

�

� t); e

itD

�;!

	

�

(r

�

) = e

itqQr

�1

+

	

�

(r

�

� t)

and, sine �

 

� �

�

and �

!

� �

+

are ompatly supported, by density we obtain the limits (108) and

(109) for all 	

�

2 L

2�

 

= L

2�

�;!

.
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6.3 Sharp estimate of 1

[0;+1[

(D

0

)U(0; T ): proof of theorem 5.2

We briey desribe the steps of the proof. First, we take advantage of the spherial invariane to redue

our study to a one dimensional problem. Sine with (74), (75) and (87) we have

1

[0;+1[

(D

0

)U (0; T ) = e

�iTÆ

M

(l;n)2I

E

�

ln

1

[Æ;+1[

(D

V

l;�

;0

)U

V

l;�

(0; T )R

�

ln

; Æ :=

qQ

r

0

;

it is suÆient to study the propagator 1

[Æ;+1[

(D

V

l;�

;0

)U

V

l;�

(0; T ). Now, to simplify the notations, we

forget subsripts ln and �. We hoose J 2 C

1

(R

r

�

) satisfying

9 a; b 2 R; 0 < a < b < 1 J (r

�

) =

�

1 r

�

< a

0 r

�

> b

(110)

and split in two parts our investigation:

1

[Æ;+1[

(D

V;0

)U

V

(0; T ) = 1

[Æ;+1[

(D

V;0

)JU

V

(0; T ) + 1

[Æ;+1[

(D

V;0

)(1�J )U

V

(0; T ): (111)

Far from the star, we treat the term 1

[Æ;+1[

(D

V;0

)(1 � J )U

V

(0; T ) using theorem 4.1 on the sattering

by the eternal blak-hole. Indeed, we have:

1

[Æ;+1[

(D

V;0

)(1�J )U

V

(0; T ) = 1

[Æ;+1[

(D

V;0

)(1�J )U

V;R

(�T );

seeing that

U (t) = e

�it

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

;R

(t)R

�

ln

where U

V

l;�

;R

is de�ned by proposition 6.2. Near the star, with �

0

in ad-ho dense subspae on L

2

R

, we note

that JU

V

(0; T )�

0

is given by J�

V;g

T

(0; r

�

). The funtion �

V;g

T

(t; r

�

) is the only solution of the mixed

harateristi problem (81) and (82) with initial data g

T

(t) spei�ed on the harateristi sub-manifold

� := f(t; r

�

) 2 R

t

� [z(t);+1[; r

�

= 1� tg suh that

g

T

(t) :=

t

(0; [U

V

(t; T )�

0

(1� t)℄

2

; [U

V

(t; T )�

0

(1� t)℄

3

; 0); 9 t

g

> 0 : t > t

g

) g

T

(t) = 0:

Conurrently, in L

2

norm, we prove that

g

T

(t) � g

T

2

(t) := (W

�

0;R

�

0

)(1� 2t� T ); T ! +1;

where the wave operator W

�

0;R

is de�ned in lemma 6.3, seeing that

P

r

�

W

�

 

�

�

=

M

(l;n)2I

E

�

ln

W

�

0;R

R

�

ln

: (112)

Then, in L

2

0

norm we obtain

1

[Æ;+1[

(D

V;0

)JU

V

(0; T )�

0

� 1

[Æ;+1[

(D

V;0

)J�

V;g

T=2

� 1

[0;+1[

(D

0;0

)J�

0;g

T=2

; T ! +1:

The last term entails asymptotially an expliit alulation whih leads to a term of KMS-type depending

onW

�

0;R

. This proof using the harateristi problem allows us to easily introdue the wave operatorW

�

0;R

.

This operator is onneted with the urvature of the spae-time at the viinity of the eternal blak-hole

horizon. To �nish, we prove that the two terms on the right hand side in (111) are asymptotially

orthogonal as T ! +1.
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6.3.1 Preliminary estimate for 1

[Æ;+1[

(D

V;0

)U

V

(0; T )

In this part, we use the notations introdue by formulas (74) (75), (88) (89) and propositions (6.1)(6.2).

Therefore, we note that

D

V;0

= D

V;[z(0);+1[

; L

2

0

= L

2

([z(0);+1[

r

�

; dr

�

)

4

: (113)

Sine D

BH

= e

�i

�

2



5

P

r

D

V;R

e

i

�

2



5

P

�1

r

�

qQ

r

0

, then, thanks to proposition 6.3, we have �(D

V;R

) = �

a

(D

V;R

)

and therefore we dedue the following lemma of loal energy deay:

Lemma 6.2

If � � 0, then

lim

t!�1





f U

V;R

(t)�





= 0;

with f 2 C

0

(R;M

4

(C )) and lim

r

�

!�1

jf(r

�

)j = 0:

Proof:

We onsider the dense subspae L

d

(D

V;R

) in L

2

R

suh that

L

d

(D

V;R

) =

�

� 2 L

2

R

; B � R; jBj < +1; 1

B

(D

V;R

)� = �

	

:

As �(D

V;R

) = �

a

(D

V;R

), we have U

V;R

(t)* 0; t! �1. Then for all � 2 L

d

(D

V;R

)

lim

t!�1





f 1

B

(D

V;R

)U

V;R

(t)�





= 0;

beause f1

B

(D

V;R

) is ompat on L

2

R

following proposition B.7.1 in [7℄. Hene, by a density argument,

the limit is proved for � 2 L

2

R

.

We hoose a ut-o� funtion � 2 C

1

(R

r

�

), suh that

9 a; b 2 R; �1 < a < b < +1 �(r

�

) =

�

1 r

�

< a

0 r

�

> b

; (114)

and the subspaes L

2+

R

, L

2�

R

of L

2

R

, satisfying :

L

2+

R

=

�

� 2 L

2

R

; �

2

� �

3

� 0

	

; L

2�

R

=

�

� 2 L

2

R

; �

1

� �

4

� 0

	

:

Therefore, we state the lemma:

Lemma 6.3

The wave operators

W

�

0;R

= s� lim

t!�1

U

0;R

(�t)�U

V;R

(t); in L

2

R

W

�

V;[z(0);+1[

= s� lim

t!�1

U

V;[z(0);+1[

(�t)(1� �)U

V;R

(t) in L

2

0

= L

2

([z(0);+1[

r

�

; dr

�

)

4

exist and are independent of � satisfying (114). Moreover

Ran

�

W

�

0;R

�

= L

2�

R

; Ran

�

W

�

V;[z(0);+1[

�

= P

a

�

D

V;[z(0);+1[

�

L

2

0

(115)

where P

a

�

D

V;[z(0);+1[

�

is the projetor on the absolutely ontinuous subspae of D

V;[z(0);+1[

, and for

f 2 H

1

R

lim

t!�1







U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f







H

1

R

= 0: (116)
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Proof:

For the wave operator W

�

0;R

, the existene and property (115) are ontained in theorem 4.1, sine (112)

exists and is an isometry from L

2

BH

onto L

2

BH

:= P

r

L

2

 

. For W

�

V;[z(0);+1[

, we note that

�

D

V;℄�1;z(0)℄

�D

V;[z(0);+1[

� i

�

�1

�

�

D

V;R

� i

�

�1

is of �nite rank. Then, with the notations (93) introdued in the proof of theorem 4.1, we obtain by the

Birman-Kuroda theorem the existene on L

2

R

of the wave operator

W

�

�

D

0;℄�1;z(0)℄

; D

V;R

;J

1

�

�W

�

�

D

V;[z(0);+1[

; D

V;R

;J

2

�

=W

�

�

D

0;℄�1;z(0)℄

�D

V;[z(0);+1[

; D

V;R

�

;

where

J

1

: � 2 L

2

R

7! J

1

� = �

j

℄�1;z(0)℄

2 L

2

(℄�1; z(0)℄

r

�

; dr

�

)

4

;

J

2

: � 2 L

2

R

7! J

2

� = �

j

[z(0);+1[

2 L

2

([z(0);+1[

r

�

; dr

�

)

4

= L

2

0

;

with the property

Ran

�

W

�

�

D

V;℄�1;z(0)℄

�D

V;[z(0);+1[

; D

V;R

��

=

�

P

a

�

D

V;℄�1;z(0)℄

�

� P

a

�

D

V;[z(0);+1[

��

L

2

R

:

Now, we must show the equality:

W

�

V;[z(0);+1[

=W

�

�

D

V;[z(0);+1[

; D

V;R

;J

2

�

: (117)

It arises from lemma 6.2. Indeed, for all � 2 L

2

R

, we have





[J

2

� (1� �)℄U

V;R

(t)�





L

2

0

�





1

[z(0);+1[

�U

V;R

(t)�





! 0; t! �1;

beause lim

jr

�

j!+1

1

[z(0);+1[

� = 0. Now we prove property (116). Sine wave operatorW

�

0;R

exists, then

W

�

0;R

D

V;R

= D

0;R

W

�

0;R

:

Given f 2 H

1

R

= D(D

V;R

), then there exists � 2 L

2

R

suh that � = D

V;R

f . Therefore, with the previous

formula







U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f







H

1

R

�







D

0;R

U

0;R

(t)

�

W

�

0;R

f

�

� �D

V;R

U

V;R

(t)f







+





�

�V + [�;D

0;R

℄

	

U

V;R

(t)f





+







U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f







;

=







U

0;R

(t)

�

W

�

0;R

�

�

� �U

V;R

(t)�







+





�

�V + [�;D

0;R

℄

	

U

V;R

(t)f





+







U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f







:

The �rst and the third norm on the right hand side are treated by the previous sattering results for

W

�

0;R

, and the seond using lemma 6.2, sine lim

r

�

!�1

(j�V j+ j[�;D

0;R

℄j) = 0.

Now, we solve the harateristi Cauhy problem

Lemma 6.4

For any g :=

t

(0; g

2

; g

3

; 0) 2 H

1

R

, suh that t > t

g

) g(t) = 0, then there exists an unique solution � of

�

t

� = i�

1

�

r

�

�+ iV �; t 2 R; z(t) < r

�

< �t+ 1; (118)

�

4

(t; z(t)) = Z(t)�

2

(t; z(t)); �

1

(t; z(t)) = �Z(t)�

3

(t; z(t)); t 2 R; (119)

(0;�

2

;�

3

; 0)(t;�t+ 1) = g(t); t 2 R; (120)

t > t

g

; r

�

2 [z(t);�t+ 1℄) �(t; r

�

) = 0; (121)

with

e

� 2 C

1

(R

t

; L

2

R

) \ C

0

(R

t

; H

1

R

) suh that

t 2 R; r

�

2 [z(t);�t+ 1℄) �(t; r

�

) =

e

�(t; r

�

): (122)
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Proof:

We prove the uniqueness. Given � a solution of the problem for g � 0 suh that

e

� 2 C

1

(R

t

; L

2

R

) \

C

0

(R

t

; H

1

R

) and z(t) < r

�

)

e

�(t; r

�

) = �(t; r

�

). We have for t 2 R:

d

dt

Z

�t+1

z(t)

j�j

2

(t; r

�

)dr

�

= � j�j

2

(t;�t+ 1)� _z(t) j�j

2

(t; z(t)) + 2

Z

�t+1

z(t)

< < �

t

�;� >

C

4

(t; r

�

)dr

�

;

= �2 j�

2

j

2

(t;�t+ 1)� 2 j�

3

j

2

(t;�t+ 1)

+ 2

Z

�t+1

z(t)

< < �

t

�� i�

1

�

r

�

	� iV�;� >

C

4
(t; r

�

)dr

�

:

Sine �(t; r

�

) satis�es equation (118), then

d

dt

Z

�t+1

z(t)

j�j

2

(t; r

�

)dr

�

= �2 j�

2

j

2

(t;�t+ 1)� 2 j�

3

j

2

(t;�t+ 1): (123)

Integrating (123) on [t; T ℄, T > t

g

with respet to time, we obtain with (121),

Z

�t+1

z(t)

j�j

2

(t; r

�

)dr

�

= 2

Z

+1

t

jgj

2

(�)d� � 2kgk

2

: (124)

Therefore, sine g � 0 then � � 0.

Now, we prove the existene of the solution for a regular initial data g = (0; g

2

; g

3

; 0) 2 C

1

0

(R)

4

. First,

we solve the following harateristi problem:

�

t

f

V

= i�

1

�

r

�

f

V

+ iV f

V

; t 2 R; r

�

> �t+ 1; (125)

f

V

(t;�t+ 1) = g(t); t 2 R; (126)

t 2℄1� r

�

; r

�

+ a[ ) f

V

(t; r

�

) = 0; (127)

where

a = inf [supp(g)℄ :

The ontinuous solution f

V

of (125), (126) and (127) is given by the ontinuous solution of the following

equivalent integral problem:

f

V

(t; r

�

) = F (X = t+ r

�

� 1; T = t� r

�

� a) =

�

g

�

T+a+1

2

�

+ BF (X;T ) X � 0; T > 0;

0 X � 0; T � 0;

; (128)

BF (X;T ) =

i

2

0

B

B

B

B

B

B

�

R

T

0

h

V

�

X���a+1

2

�

F (X; �)

i

1

d�

R

X

0

h

V

�

��T�a+1

2

�

F (�; T )

i

2

d�

R

X

0

h

V

�

��T�a+1

2

�

F (�; T )

i

3

d�

R

T

0

h

V

�

X���a+1

2

�

F (X; �)

i

4

d�

1

C

C

C

C

C

C

A

: (129)

For X � 0; T > 0, putting

F

0

(X;T ) = g

�

T + a+ 1

2

�

; F

n+1

(X;T ) = BF

n

(X;T ); n � 0;

and sine, g and V are bounded, we have

�

�

BF

n�1

(X;T )

�

�

� kgk

L

1

kV k

n

L

1

6

n

(X + T )

n

n!

; n � 1:
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Then the Piard method, gives a unique solution F (X;T ) 2 C

0

([0;+1[

X

�R

T

)

4

of (128) suh that

F (X;T ) =

+1

X

n=0

F

n

(X;T ); jF (X;T )j � kgk

L

1

exp (6 kV k

L

1

(jX j+ jT j)):

Seeing that (X � 0; T � 0)) F (X;T ) = 0, V 2 C

1

(R

r

�

;M

4

(C )) and for X;T � 0

j�

X

F

n

(X;T )j+ j�

Y

F

n

(X;T )j � 16 kgk

L

1

kV k

n

L

1

12

n�1

(X + T )

n�1

(n� 1)!

+ 2 kgk

L

1







V

0







L

1

kV k

n�1

L

1

12

n

(X + T )

n

n!

+







g

0







L

1

kV k

n

L

1

6

n

(X + T )

n

n!

; n � 1;

we have F (X;T ) 2 C

1

(f(X;T ) 2 [0;+1[

X

�R

T

: 2t

g

� X + T + a+ 1g)

4

. Hene,

[�

g

℄

H

(:; :) = [U

V

(:; t

g

)�

V

(t

g

; :)℄

H

2 C

1

(R

t

; L

2

R

) \ C

0

(R

t

; H

1

R

); (130)

[�

V

(t

g

; :)℄

H

2 H

1

R

; �

V

(t

g

; r

�

) :=

�

f

V

(t

g

; r

�

) r

�

> �t

g

+ 1;

0 z(t

g

) < r

�

� �t

g

+ 1;

(131)

is a solution of (81), (82), (120) and (121) and in partiular of (118), (119), (120) and (121) with

g 2 C

1

0

(R). Moreover we have

d

dt

Z

+1

�t+1

jf

V

j

2

(t; r

�

)dr

�

= 2 jgj

2

(t);

and integrating this formula on [�1; t

g

℄ with respet to time, we obtain

Z

+1

�t

g

+1

jf

V

j

2

(t

g

; r

�

)dr

�

= 2 kgk

2

:

Thanks to (130), (131) and (86),

sup

t2R

k[�

g

(t; :)℄

L

k

2

L

2

R

= sup

t2R

k�

g

(t; :)k

2

t

= 2 kgk

2

(132)

and by density and ontinuity, we get the existene with g 2 H

1

R

.

We introdue some notations: For g 2 L

2

R

,

g

T

(:) := g(:� T ); T � 0;

and following the previous lemma, when g :=

t

(0; g

2

; g

3

; 0) 2 H

1

R

, t > t

g

) g(t) = 0, we de�ne the

operator G

V

(g) suh that

G

V

(g)(r

�

) := J (r

�

)�

V

(0; r

�

); r

�

2 [z(0); 1℄; (133)

with J as in (110) and �

V

(0; r

�

) the solution of (118), (119), (120) and (121). Moreover, by density and

thanks to (124), formula (133) is well de�ned for g 2 L

2

R

, t > t

g

) g(t) = 0. Therefore, we prove the �rst

important estimate:

Lemma 6.5

Given g :=

t

(0; g

2

; g

3

; 0) 2 L

2

R

suh that t > t

g

) g(t) = 0, then

lim

T!+1





1

[0;+1[

(D

0;0

)

�

G

0

�

g

T

��

L





2

0

= 2 < g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

g >

L

2

R

; (134)

and

�

G

0

�

g

T

��

L

* 0; T ! +1; in L

2

0

: (135)
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Proof:

As the norm of (134) is uniformly bounded in T by (124), it is enough to obtain (134) for g 2 C

1

0

(R)

4

suh that supp(g) � [0; R℄, R > 0 �xed. For T >

1�z(0)

2

, we have G

0

(g

T

) 2 [z(0); 0[ and thanks to lemma

6.1,

G

0

(g

T

)(r

�

) = Z(�(r

�

))

t

(� g

3

; 0; 0; g

2

)

T

�

�(r

�

) +

1� r

�

2

�

;

with � and Z respetively de�ned by (8) and (76). We de�ne spinor G

T

, suh that

G

T

(r

�

) :=

1

p

��

0

r

�

t

(� g

3

; 0; 0; g

2

)

T

�

�

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1

2

�

; r

�

< 0; (136)

with supp(G

T

) �℄�1; 0[ and the real C

k

> 0 as in (8). In the �rst time, we remark that, for f 2 L

2

R

,

< [G

T

℄

L

; f >

L

2

R

! 0; T ! +1: (137)

Indeed, for f 2 C

1

0

(R)

4

, we have

�

�

�

< [G

T

℄

L

; f >

L

2

R

�

�

�

� kfk

L

1

(R)

4

Z

R

�

�

[G

T

℄

L

�

�

(r

�

)dr

�

= kfk

L

1

(R)

4

Z

0

�1

�

�

G

T

�

�

(r

�

)dr

�

�

q

�

0

C

�

0

e

�2�

0

T+�

0

kfk

L

1

(R)

4

Z

R

e

��

0

y

jgj(y)dy ! 0; T ! +1:

We obtain (137) by density and using the inequality k[G

T

℄

L

k � kgk. Moreover, for T >

1�z(0)

2

, we have,





[G

T

℄

L

�

�

G

0

(g

T

)

�

L





2

0

=

Z

0

z(0)

�

�

G

T

(r

�

)�G

0

(g

T

)

�

�

2

dr

�

:

We remark that: Z(�(r

�

)) 2 C

0

([z(0); 0[) and

lim

r

�

!0

�

h(r

�

) = 1; h(r

�

) :=

p

��

0

r

�

Z(�(r

�

)): (138)

Indeed, thanks to (8) and (9), (138) entails that

h(r

�

) =

p

��

0

r

�

s

1� _z(�(r

�

))

1 + _z(�(r

�

))

=

s

�2�

0

r

�

+O

0

(r

�

2

)

�2�

0

r

�

+O(r

�

2

)

; � 1 < _z(�(r

�

)) � 0; r

�

2 [z(0); 0[:

Therefore, using (8) and putting y(r

�

) = �

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1

2

� T ,





[G

T

℄

L

�

�

G

0

(g

T

)

�

L





2

0

= 2

Z

+1

�

1

2�

0

ln(�z(0))+

1

2�

0

ln(C

�

0

)+

1

2

�T

�

�

g(y)� h

�

�C

�

0

e

�2T�

0

�2y�

0

+�

0

�

g

�

y +O(e

�2T�

0

�2y�

0

+�

0

)

�

�

�

2

dy;

and by Lebesgue theorem, we obtain:





�

G

T

�

L

�

�

G

0

(g

T

)

�

L





2

0

! 0; T ! +1: (139)
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With (137), this last limit gives (135). Finally, for T > �

1

2�

0

ln(�z(0)) +

1

2�

0

ln(C

�

0

) +

1

2

, and denoting

F the Fourier transform, we have





1

[0;+1[

(D

0;0

)[G

T

℄

L





2

0

=

1

2�

Z

+1

0

�

�

F

�

[G

T

℄

L

�

�

�

2

(�)d� (140)

=

C

�

0

�

0

2�

Z

+1

0

�

�

�

�

Z

R

e

iC

�

0

�e

�

0

y

e

�

0

2

y

~g(y)dy

�

�

�

�

2

d�; ~g(y) = g(�y=2);

=< ~g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

~g >

L

2

R

; (lemma III.6 in [4℄);

= 2 < g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

g >

L

2

R

;

whih implies, with (139), limit (134).

To prove the following estimate, we need a Gronwall type inequality:

Lemma 6.6

Given J;E

1

; E

2

2 C

0

([a; b℄) and t 2 [a; b℄) E

1

(t); E

2

(t) � 0, suh that

J(t) � E

2

(t) +E

1

(t)

Z

t

a

J(s)ds; a � t � b; (141)

then

J(t) � E

2

(t) +E

1

(t) exp

�

Z

t

a

E

1

(s)ds

�

Z

t

a

E

2

(s)ds; a � t � b: (142)

Proof:

We put

R(s) = exp

�

�

Z

s

a

E

1

(�)d�

�

Z

s

a

J(�)d�:

We di�erentiate R(s) and using (141):

d

ds

R(s) = J(s) exp

�

�

Z

s

a

E

1

(�)d�

�

�E

1

(s) exp

�

�

Z

s

a

E

1

(�)d�

�

Z

s

a

J(�)d�;

� E

2

(s) exp

�

�

Z

s

a

E

1

(�)

�

:

As R(a) = 0, integrating the result on [a; t℄, we obtain

R(t) �

Z

t

a

E

2

(s) exp

�

�

Z

s

a

E

1

(�)d�

�

ds:

Sine s 2 [a; t℄ and E

1

is non negative:

exp

�

�

Z

s

a

E

1

(�)d�

�

� 1:

Hene

Z

t

a

J(s)ds � exp

�

Z

t

a

E

1

(�)d�

�

Z

t

a

E

2

(s)ds;

and (142) follows.
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Lemma 6.7

Given g :=

t

(0; g

2

; g

3

; 0) 2 L

2

R

suh that t > t

g

) g(t) = 0, then

lim

T!+1





�

G

0

�

g

T

��

L

�

�

G

V

�

g

T

��

L





2

0

= 0; (143)

and

�

G

V

�

g

T

��

L

* 0; T ! +1; in L

2

0

: (144)

Proof:

With (124), it is enough to obtain the result for g 2 C

1

0

(R)

4

suh that supp(g) � [0; R℄, R > 0 �xed. By

lemma 6.4, formulas (130) and (131), for r

�

2 [z(0); 1℄, we have

G

V

�

g

T

�

(r

�

) = J (r

�

) [U

V

(0; R+ T )�

V

(R + T; :)℄ (r

�

);

�

V

(R+ T; r

�

) =

�

f

V

(R+ T; r

�

) r

�

> �R� T + 1;

0 z(R+ T ) < r

�

� �R� T + 1:

(145)

Now, for r

�

2 [z(0); 1℄, we write

�

G

V

�

g

T

�

�G

0

�

g

T

��

(r

�

) = J (r

�

) [U

V

(0; R+ T )�

V

(R+ T; :)� U

0

(0; R+ T )�

0

(R + T; :)℄ (r

�

);

= J (r

�

) [U

V

(0; R+ T ) f�

V

(R + T; :)� �

0

(R + T; :)g℄ (r

�

)

�J (r

�

) [fU

0

(0; R+ T )� U

V

(0; R+ T )g�

0

(R+ T; :)℄ (r

�

);

=: A

1

+A

2

:

We estimate A

1

. First, with (145), we have

kA

1

k

2

0

�

Z

+1

z(R+T )

j�

V

(R + T; r

�

)� �

0

(R + T; r

�

)j

2

dr

�

;

=

Z

+1

�R�T+1

jf

V

(R+ T; r

�

)� f

0

(R+ T; r

�

)j

2

dr

�

;

=: J(R+ T ):

But,

d

dt

J(t) = jf

V

� f

0

j

2

(t;�t+ 1) + 2<

Z

+1

�t+1

< �

t

(f

V

� f

0

) (t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4
dr

�

;

=: J

1

+ 2<J

2

:

Sine the solutions f

V

and f

0

have the same harateristi data, J

1

= 0. On the other hand, with the

help of equations satis�ed by f

V

and f

0

, we have:

J

2

=

Z

+1

�t+1

< i�

1

�

r

�

(f

V

� f

0

) (t; r

�

) + iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

;

= �

Z

+1

�t+1

< (f

V

� f

0

) (t; r

�

); i�

1

�

r

�

(f

V

� f

0

) (t; r

�

) >

C

4
dr

�

+

Z

+1

�t+1

< iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

;

= �

Z

+1

�t+1

< (f

V

� f

0

) (t; r

�

); i�

1

�

r

�

(f

V

� f

0

) (t; r

�

) + iV f

V

(t; r

�

) >

C

4

dr

�

+ 2<

Z

+1

�t+1

< iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

;

= �

�

J

2

+ 2<

Z

+1

�t+1

< iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

:
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Then

d

dt

J(t) = 2<

Z

+1

�t+1

< V (r

�

)f

V

(t; r

�

); f

V

(t; r

�

)� f

0

(t; r

�

) >

C

4

dr

�

: (146)

In lemma 6.4, we have proved that the solution f

V

(t; x) propagates at speed one . Therefore, for t 2

[T; T +R℄, we have

supp

�

g

T

�

� [T; T +R℄) supp (f

V

(t; :)) � [�t+ 1; t� 2T + 1℄; T; R > 0; (147)

) J(0) = 0:

Hene, integrating (146) on [0; T +R℄, we obtain:

J(R+ T ) = 2<

Z

T+R

0

Z

+1

�t+1

< V (r

�

)f

V

(t; r

�

); f

V

(t; r

�

)� f

0

(t; r

�

) >

C

4

dr

�

dt:

By the Cauhy-Shwartz inequality,

J(R + T ) � 2

Z

T+R

0

Z

+1

�t+1

j< V (r

�

)f

V

(t; r

�

); f

V

(t; r

�

)� f

0

(t; r

�

) >j dr

�

dt;

� 2

Z

T+R

0

�

Z

+1

�t+1

jV (r

�

)f

V

(t; r

�

)j

2

dr

�

�

1=2

J(t)

1=2

dt:

Thanks to the remark (147) and as

p

x � x+ 1 for x � 0, then we dedue that

J(R + T ) � E

2

(T +R) +E

1

(T +R)

Z

T+R

0

J(t)dt;

E

1

(t) := 4kgk supfjV (x)j; x � �t+ 2R+ 1g ; E

2

(t) := tE

1

(t):

As E

1

; J 2 C

0

(R), by lemma 6.6, we have

J(T +R) � E

2

(T +R) +E

1

(T +R) exp

 

Z

T+R

0

E

1

(s)ds

!

Z

T+R

0

E

2

(s)ds:

Sine, V (r

�

) is exponentially dereasing as r

�

! �1, we get

kA

1

k

2

0

� J(R+ T )! 0; T ! +1: (148)

To estimate A

2

, we use the usual formula

fU

0

(0; R+ T )� U

V

(0; R+ T )g�

0

(R + T; :) = �

Z

R+T

0

U

V

(0; s)V U

0

(s;R+ T )�

0

(R + T; :)ds:

Hene, we dedue with (86) that

kA

2

k

0

� kfU

0

(0; R+ T )� U

V

(0; R+ T )g�

0

(R + T; :)k

0

;

�

Z

R+T

0

kV U

0

(s;R+ T )�

0

(R+ T; :)k

s

ds: (149)

Now we de�ned the time �

T

, suh that

z(�

T

)� �

T

= �2T + 1:
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Thanks to (6):

�

T

= T �

1

2

+O

�

e

�2�

0

T

�

; T ! +1 (150)

and aording lemma 6.1, we have also

s 2 [0; �

T

℄) [U

0

(s;R+ T )�

0

(R + T; :)℄ (r

�

) = Z(�(r

�

))

t

(� g

3

; 0; 0; g

2

)

T

�

�(r

�

) +

1� r

�

� s

2

�

(151)

and

s 2 [0; �

T

℄) supp [U

0

(s;R+ T )�

0

(R + T; :)℄ �

�

�s�

�

�

O(e

�2�

0

T

)

�

�

;�s

�

: (152)

Indeed, for s 2 [0; �

T

℄,

supp [U

0

(s;R+ T )�

0

(R + T; :)℄ � [�s+ 2�

T

� 2T + 1;�s℄ ;

and with (150), (152) follows. Hene,

kA

2

k

0

�

Z

�

T

0

kV U

0

(s;R + T )�

0

(R+ T; :)k

s

ds+

Z

R+T

�

T

kV U

0

(s;R+ T )�

0

(R + T; :)k

s

ds;

� A

21

+A

22

:

First, we estimate A

21

. With the help of (152) and (151), we have,

A

21

�

Z

�

T

0

p

I(s)ds:

where

I(s) :=

Z

�s

�s�

j

O(e

�2�

0

T

)

j

�

�

�

�

V (r

�

)Z(�(r

�

))

t

(� g

3

; 0; 0; g

2

)

T

�

�(r

�

) +

1� r

�

� s

2

�

�

�

�

�

2

dr

�

: (153)

Using (8) and putting y(r

�

) = �

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1�s

2

� T , we have

I(s) � 2kV k

2

L

1

Z

y(�s)

y

(

�s�

j

O

(

e

�2�

0

T

)j)

h

2

(r

�

(y; s; T )) jg (y +O(r

�

(y; s; T )))j

2

dy;

� C

z

kV k

2

L

1

kgk

2

L

1

�

ln

�

s+

�

�

O(e

�2�

0

T

)

�

�

�

� ln(s)

�

; C

z

> 0;

with h de�ned in (138). First, for x � 0, log(x+ 1) � x. Hene we obtain

Z

�

T

0

p

I(s)ds � C

z;V;g

Z

�

T

0

q

ln (s+ jO(e

�2�

0

T

)j)� ln(s)ds

� C

z;V;g

�

�

O(e

�2�

0

T

)

�

�

Z

+1

C(T )

p

log(x+ 1)

x

2

dx; C(T ) :=

�

�

�

�1

T

O(e

�2�

0

T

)

�

�

;

� C

z;V;g

�

�

O(e

�2�

0

T

)

�

�

 

2

Z

1

C(T )

p

x

x

2

dx+

Z

+1

1

p

log(x + 1)

x

2

dx

!

;

� C

z;V;g

�

q

j�

T

O(e

�2�

0

T

)j+ C

�

�

O(e

�2�

0

T

)

�

�

�

! 0; T ! +1:
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For s 2 [�

T

; T + R℄ we have: supp[U

0

(s;R + T )�

0

(R+ T; :)℄ � [z(s); 2R+ 1� s℄. Hene, thanks to (150)

and (132),

A

22

�

Z

R+T

�

T

kV U

0

(s;R+ T )�

0

(R + T; :)k

s

ds

� 2kgk

Z

T+R

�

T

sup fjV (x)j; z(s) � x � 2R+ 1� sg ds! 0; T ! +1:

Then, we obtain that

kA

2

k

0

! 0; T ! +1: (154)

Now, �nally, with (154) and (148), we dedue that





�

G

0

�

g

T

��

L

�

�

G

V

�

g

T

��

L





0

� kA

1

k

0

+ kA

2

k

0

! 0; T ! +1:

Lastly, the above result with (135), entails (144).

Lemma 6.8

Given g :=

t

(0; g

2

; g

3

; 0) 2 L

2

R

suh that t > t

g

) g(t) = 0, then

lim

T!+1





1

[Æ;+1[

(D

V;0

)

�

G

V

�

g

T

��

L





2

0

= 2 < g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

g >

L

2

R

; (155)

with

Æ =

qQ

r

0

:

Proof:

First, we de�ne V

1

thanks to V suh that

V

1

:= ÆI

R

4

+ &A

�

= lim

r

�

!+1

V (r

�

); Æ =

qQ

r

0

; & = �m

p

F (r

+

); (156)

where A

�

as in (76). If & < 0 (� = 0), thus by assumption � 6= (2k + 1)�, k 2 Z and from the proof of

lemma III-7 in [4℄, we set that:

1

[0;+1[

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

� 1

[0;+1[

�

D

&A

�

;R

�

is ompat: (157)

For g 2 C

1

0

(R)

4

suh that supp(g) � [0; R℄, R > 0 �xed, and T > �

1

2�

0

ln(�z(0)) +

1

2�

0

ln(C

�

0

) +

1

2

, we

have supp

�

G

T

�

�℄z(0); 0[ whih entails:

1

[0;+1[

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� �

G

T

�

L

= 0� 1

[0;+1[

�

D

&A

�

;[z(0);+1[

� �

G

T

�

L

;

where G

T

is de�ned by (136). Sine,

1

[Æ;+1[

�

D

V

1

;0

�

= 1

[0;+1[

�

D

&A

�

;0

�

= 1

[0;+1[

�

D

&A

�

;[z(0);+1[

�

(158)

and aording to (137) and (157), we dedue that





1

[0;+1[

�

D

&A

�

;[z(0);+1[

� �

G

T

�

L

� 1

[0;+1[

�

D

&A

�

;R

� �

G

T

�

L





! 0; T ! +1: (159)

Seeing that D

&A

�

;R

is the Dira Hamiltonian, using the Fourier transform F :

F1

[0;+1[

�

D

&A

�

;R

�

=

"

1

2

+

1

2

p

�

2

+ &

2

�

i��

1

+ &A

�

�

#

F :
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We remark that

�

�

F

��

G

T

�

L

�

(�)

�

�

2

= 4�

0

B(T )j�(B(T )�)j

2

;

�(B(T )�) :=

Z

R

e

��

0

y

e

i�B(T )e

�2�

0

y

g(y)dy; B(T ) := C

�

0

e

�2�

0

T+�

0

:

Hene, thanks to Lebesgue's theorem,





1

[0;+1[

�

D

0;R

� �

G

T

�

L

� 1

[0;+1[

�

D

&A

�

;R

� �

G

T

�

L





2

= C

1

Z

R

�

�

�

�

�

i�

j�j

�

1

�

1

p

�

2

+ &

2

�

i��

1

+ &A

�

�

�

�

�

�

�

2

�

�

F

��

G

T

�

L

�

(�)

�

�

2

d�; C

1

> 0;

� C

2

Z

R

�

�

�

�

�

i�

j�j

�

1

�

1

p

�

2

+B

2

(T )&

2

�

i��

1

+B(T )&A

�

�

�

�

�

�

�

2

j�(�)j

2

d� ! 0; T ! +1; C

2

> 0:

(160)

By (140), we have,





1

[0;+1[

�

D

0;R

� �

G

T

�

L





2

=

1

2�

Z

R

�

�

F

��

G

T

�

L

�

(�)

�

�

2

d� =





1

[0;+1[

�

D

0;0

� �

G

T

�

L





2

: (161)

As k[G

T

℄

L

k � kgk, by density and using (158), (159) ,(160), (161) and (139), we obtain, for g 2 L

2

R

�

�

�





1

[Æ;+1[

�

D

V

1

;0

� �

G

0

�

g

T

��

L





2

�





1

[0;+1[

�

D

0;0

� �

G

0

�

g

T

��

L





2

�

�

�

! 0; T ! +1: (162)

If & = 0 (� > 0), then we have learly:





1

[Æ;+1[

�

D

V

1

;0

� �

G

0

�

g

T

��

L





2

=





1

[0;+1[

�

D

0;0

� �

G

0

�

g

T

��

L





2

: (163)

Moreover, from lemma III-10 in [4℄, we have

1

[Æ;+1[

�

D

V

1

;0

�

� 1

[Æ;+1[

�

D

V;0

�

is ompat. (164)

Then, using respetively (143), (164)-(135), (162)-(163) and (134), we onlude that:

lim

T!+1





1

[Æ;+1[

�

D

V;0

� �

G

V

�

g

T

��

L





= lim

T!+1





1

[Æ;+1[

�

D

V;0

� �

G

0

�

g

T

��

L





;

= lim

T!+1





1

[Æ;+1[

�

D

V

1

;0

� �

G

0

�

g

T

��

L





;

= lim

T!+1





1

[0;+1[

�

D

0;0

� �

G

0

�

g

T

��

L





;

= 2 < g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

g >

L

2

R

:

We de�ned a dense subspae D

R

of L

2

R

, suh that,

D

R

=

�

� 2 H

1

R

: 9R > 0 r

�

� R) �(r

�

) = 0

	

:

For f 2 D

R

, we put

g

T

(t) :=

t

(0; [U

V

(t; T )f ℄

2

; [U

V

(t; T )f ℄

3

; 0)(�t+ 1); (165)

g(t) =

�

W

�

0;R

f

�

(�2t+ 1); (166)

where [x℄

j

is the jth omponent of x 2 C

4

. Moreover

2t � T �R+ 1) g

T

(t) = 0; (167)

2t � �R+ 1) g(t) = 0: (168)

30



Lemma 6.9

Given f 2 D

R

, with the de�nitions (165) and (166) we have

Z

+1

0

�

�

�

g

T

(t)� g

T

2

(t)

�

�

�

2

dt! 0; T ! +1: (169)

Proof:

We de�ne � suh that

�(t; r

�

) := U

V;R

(t)f(r

�

):

Sine f 2 D

R

, then,

jtj � R� r

�

) �(t; r

�

) =

�

W

�

0;R

f

�

(r

�

� t) = 0: (170)

Then, using the notation of (165) and for t+ r

�

� R, we remark that �(t; r

�

) as is solution of

�(t; r

�

) =

�

W

�

0;R

f

�

(r

�

� t) +

Z

r

�

�1

A�(t; r

�

; s)ds; (171)

with

j = 1; 4 ) [A�(t; r

�

; s)℄

j

= �[iV (s)�(r

�

� s+ t; s)℄

j

;

j = 2; 3 ) [A�(t; r

�

; s)℄

j

= [iV (s)�(s� r

�

+ t; s)℄

j

:

>From (171), for r

�

� R, we dedue that

k�(:; r

�
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H

1
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H
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Z

r

�
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�
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�
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H

1
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�

℄)

4

ds

+ 2

Z

r

�

�1

jV (s)j k�(s� r

�

+ :; r

�
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H

1

(℄�1;R�r

�

℄)

4

ds;
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W

�
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f







H

1

R

+ 2

Z

r

�

�1

jV (s)j k�(:; r

�

)k

H

1

(℄�1;R�s℄)

4

ds

+ 2

Z

r

�

�1

jV (s)j k�(:; r

�

)k

H

1

(℄�1;R�2r

�

+s℄)

4

ds;

� C

1

kfk

H

1

R

+ 4

Z

r

�

�1

jV (s)j k�(:; r

�

)k

H

1

(℄�1;R�s℄)

4

ds; C

1

> 0:

Sine, V (s) is exponentially dereasing as s! �1, by Gronwall lemma we obtain

sup

r

�

�R

k�(:; r

�

)k

H

1

(℄�1;R�r

�

℄)

4

< +1: (172)

On the other hand, using (171) and (172), we have for r

�

� R
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�
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�
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�

� :)







H
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� 4

Z
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�1

jV (s)j k�(:; r

�
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H
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4

ds;

� C

2

Z

r

�

�1

jV (s)jds; C

2

> 0:

Thanks to the Sobolev embedding, for r

�

� R, we onlude that

sup

��R�r

�

�

�

�

�(�; r

�

)�W

�

0;R

f(r

�

� �)

�

�

�

� C

3

Z

r

�

�1

jV (s)jds; C

3

> 0: (173)
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We de�ne

I :=

Z

+1

0

�

�

�

g

T

(t)� g

T

2

(t)

�

�

�

2

dt

and remark that

g

T

2

(t) =

h

U

0;R

(t� T )

�

W

�

0;R

�i

(�2t+ 1);

g

T

(t) =

t

�

0;

�

U

V;R

(t� T )f

�

2

;

�

U

V;R

(t� T )f

�

3

; 0

�

(�t+ 1):

Therefore, hoosing � 2 C

1

(R

r

�

) a ut-o� funtion suh that

9 a; b 2 R; �1 < a < b < 0 �(r

�

) =

�

1 r

�

< a

0 r

�

> b

;

and for � > 0 we dedue that

I �

Z
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0

�

�

�

U

0;R

(t� T )

�

W

�

0;R

f

�
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�

�

�

2
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����T







U
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W

�
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f

�

� �U

V;R

(�)f







2

L

1

(R)

4

+

Z

+1

�

�

�

�

U

0;R

(t� T )

�

W

�

0;R

f

�

(�t+ 1)� �(t� T;�t+ 1)

�

�

�

2

dt:

By the Sobolev embedding and formula (173), for �; T � 1�R, we obtain

I � � sup

����T







U
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W

�
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f

�
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�
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�

�

�

2
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� � sup

����T







U

0;R

(�)

�

W

�

0;R

f

�

� �U

V;R

(�)f







2

H

1

R

+ C

3

Z

+1

�

�

Z

�t+1

�1

jV (s)jds

�

2

dt:

Thanks to lemma 6.3 and sine V (s) is exponentially dereasing as s! �1, we onlude that lim

T!+1

I =

0.

Lemma 6.10

Given f 2 L

2

R

, then

lim

T!+1





1

[Æ;+1[

(D

V;0

)JU

V

(0; T )f





2

0

=< W

�

0;R

f; e

2�

�

0

D
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�

1 + e
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�

0

D
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�

�1

W

�

0;R

f >

L

2

R

; (174)

with

Æ =

qQ

r

0

;

and

JU

V

(0; T )f * 0; T ! +1; in L

2

0

: (175)

Proof:

For f 2 D

R

, R > 0 �xed, thanks to (167), (168), (124) and (114), we have
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V
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h

G

V

�

g

T

2

�i
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2
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(g
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�
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G
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�
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T
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2

0

;

� 2

Z

+1

0

�

�

�

g

T

(t)� g

T

2

(t)

�

�

�

2

dt! 0; T ! +1: (176)
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Aording to lemma 6.9

lim

T!+1
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)JU

V
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2

0
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= 2
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C

4
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�

0;R

f; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

W

�

0;R

f >

L

2

R

:

With limit (176) and lemma 6.7 we obtain (175) for f 2 D

R

. Sine all norms are uniformly bounded with

respet to T , lemma is proved by density.

Finally, we prove the main result of this subpart:

Proposition 6.4

Given f 2 L

2

R

, then

lim

T!+1
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L
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; (177)

with

Æ =

qQ

r

0

:

Proof:

With simple alulation, we dedue
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L

2

0

:

Aording to limit (175) and lemma 6.3 the last term is zero as T ! +1. The two norms are by lemma

6.10 and lemma 6.3.

6.3.2 Proof of theorem 5.2

Now, we prove the key estimate. Using operators (69), (71) and the properties (73), (74) and (87), by

Lebesgue theorem and proposition 6.4, we have
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By lemma 6.3, the wave operator W

�

V

l;�

;[z(0);+1[

exists and is an isometry from L

2

R

onto

P

a

(D

V;[z(0);+1[

)L

2

0

. Hene

W
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M
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�

ln
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2
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:

If � > 0 (resp. � = 0), we de�ne the wave operator:
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By the hain rule theorem, these operators are isometries from P

a

(D

0

)L

2

0

onto L

2

�;!

, (resp. P

a

(D

0

)L

2

0

onto L

2

0;!

). From the previous disussion and the intertwining properties, we have, if � � 0

S

1

=

X

(l;n)2I







W

�

V

l;�

;[z(0);+1[

1

[Æ;+1[

(D

V;R

)R

�

ln

f







2

0

;

=







W

�

+

1

[Æ;+1[

(D

BH

+ Æ)f







2

0

;

=







W

�

�;D

W

�

+

1

[0;+1[

(D

BH

)f







2

L

2

�;!

;

=










�

�;!

1

[0;+1[

(D

BH

)f







2

L

2

�;!

;

=







1

[0;+1[

(D

�;!

)


�

�;!

f







2

L

2

�;!

:

We put
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and remark that
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Then, with (73) and (112), we obtain that
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involving the limits (58).
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