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1 Introdu
tion.

In this paper, we investigate the Hawking e�e
t [14℄ in the 
ase of the Dira
 quantum �eld. We adopt

the semi-
lassi
al approximation by supposing that the spa
e-time 
urvature in
uen
es the �elds, but the

ba
k-rea
tion on the metri
 is negle
ted. Then, we prove the emergen
e of a thermal state at the last

moments of a gravitational 
ollapse whi
h is interpreted by a stati
 observer at in�nity as an outgoing 
ux

of parti
les and anti-parti
les. Moreover, the bla
k-hole preferentially emits massive spin 1/2 parti
les

whose 
harge is of same sign as its own 
harge.

The Hawking e�e
t and more generally the quantum e�e
ts in the vi
inity of a bla
k-hole have been

the subje
t of numerous studies, we mention only the works that we have used: [5℄, [11℄, [25℄, [26℄.

A �rst mathemati
al study of the Hawking radiation was undertaken by J. Dimo
k and B. S. Kay

[10℄. In this work the authors 
onsider the 
ase of a S
hwarzs
hild bla
k hole for a Klein-Gordon �eld.

By quantizing suitably this �eld in the vi
inity of the past horizon of the bla
k hole, the authors show

that an observer lo
ated at in�nity future observes the Hawking radiation. The 
ase that was initially


onsidered by S. Hawking of gravitational 
ollapse in the Fo
k va
uum was examined by A. Ba
helot. In

a �rst time and for a �eld of Klein-Gordon [1℄, the author showed that a plunging observer in the future

S
hwarzs
hild bla
k hole observes the Hawking radiation when he 
rosses the horizon of the bla
k hole.

In a se
ond paper and for the same �eld, A. Ba
helot obtained the proof of the Hawking e�e
t [3℄: a

�xed observer in S
hwarzs
hild variables observes at last moments of 
ollapse in his own proper time,

an outgoing Hawking thermal 
ux 
oming from the horizon of the future S
hwarzs
hild bla
k hole. In

[4℄, this same author extends his study [1℄ to the 
ase of 
harged Dira
 �eld for a plunging observer in a


harged bla
k hole resulting from a gravitational 
ollapse.

Just like that was done for the �eld of Klein-Gordon in [3℄, our 
ontribution to this program of

study is to prove the Hawking e�e
t for 
harged Dira
 �eld of the point of view of a �xed observer in

S
hwarzs
hild variables for a 
ollapsing 
harged star. More pre
isely, in this work (and as for those of A.

Ba
helot) we 
onsider a very simpli�ed model of gravitational 
ollapse, for whi
h the star is modelled by

a re
e
ting sphere: the properties of the star surfa
e are given by the boundary 
ondition for the Dira


�eld on this surfa
e. Here, we 
hose the MIT bag boundary 
ondition [6℄ whi
h is 
onservative and

whi
h 
auses a re
exion of the �elds on the star surfa
e like o

urs for a bosoni
 �eld by using a Diri
hlet


ondition. These simplifying assumptions enable us to avoid diÆ
ult studies of the intera
tions between

the �elds and the 
uid whi
h 
omposes star and of the behavior of this 
uid at the time of gravitational


ollapse via the Einstein-Maxwell equations. Moreover, we suppose that the spheri
al symmetry of the
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harged star is preserved during the 
ollapse, hen
e, outside this one and by the Birkho� theorem, the

DeSitter-Reissner-Nordstr�m or the Reissner-Nordstr�m spa
es time are relevants. The gravitational


ollapse o

urs in the Fo
k va
uum. Although this last assumption is not physi
ally 
orre
t in the 
ase of

DeSitter-Reissner-Nordstr�m spa
e time (see [13℄), the mathemati
al proof remains valid. Indeed, in this


ase, it would be preferable to 
onsider a thermal state whose temperature is that of Gibbons-Hawking

asso
iated to the 
osmologi
al horizon. A forth
oming work will be to study the Hawking e�e
t for Dira


�eld in (DeSitter-)Reissner-Nordstr�m spa
e time by 
onsidering the gravitational 
ollapse in a thermal

bath of arbitrary temperature.

This arti
le is organized as follows: In the se
ond part, we de�ne the geometri
al framework for a


harged 
ollapsing star des
ribed by the globally hyperboli
 manifold (M


oll

; g). This 
ollapse 
reates the

(DeSitter-)Reissner-Nordstr�m spa
e-time (M

bh

; g) produ
ed by a 
harged bla
k-hole. In the third part,

we de�ne the Dira
 equation for massive 
harged spin 1/2 �eld on (M


oll

; g) with MIT bag boundary


onditions on the star surfa
e. The mixed problem is well-posed. In the fourth part, we study the

s
attering theory for the massive 
harged Dira
 �eld in the 
harged eternal bla
k-hole (M

bh

; g). To

do this, we introdu
e the useful wave operators at the horizon and at in�nity. More parti
ularly, we

extend the studies of [16℄, [21℄ and [18, 19℄, in proving the asymptoti
 
ompleteness for the 
lassi
al

wave operators at the horizon and in�nity when we 
onsider the 
urved DeSitter-Reissner-Nordstr�m

spa
e-time. In the �fth part, we 
onstru
t the lo
al algebra of observable U(M


oll

) as in [8℄ and [9℄, using

the Dira
-Fermi Fo
k representation on some parti
ular Cau
hy hyper-surfa
e. We de�ne the KMS-state

involving the (Hawking) temperature and the 
hemi
al potential. In this same se
tion we state the main

theorem of this work using the mathemati
al obje
ts of the previous part. We interpret the result as a

thermal state given by a KMS-state whi
h is independent on the behavior of the 
ollapse and boundary


ondition on the star for the Dira
 �eld. The last se
tion is devoted to the proofs of the te
hni
al results

useful to demonstrate the main theorem of this arti
le.

2 Geometri
al des
ription of a gravitational 
ollapse.

We introdu
e the general geometri
al framework des
ribing the 
reation of a bla
k-hole by an idealized

star 
ollapsing. First, we 
onsider the (DeSitter-)Reissner-Nordstr�m spa
e-time outside a 
harged, stati


eternal bla
k-hole in an expanding universe, as the globally hyperboli
 manifold (M

bh

; g),

M

bh

= R

t

�℄r

0

; r

+

[�S

2

!

; 0 < r

0

< r

+

� +1;

g

ab

dx

a

dx

b

= F (r)dt

2

� F

�1

(r)dr

2

� r

2

d!

2

; (1)

d!

2

= d�

2

+ sin

2

�d'

2

; ! = (�; ') 2 [0; �℄� [0; 2�[;

F (r) = 1�

2M

r

+

Q

2

r

2

�

�r

2

3

:

Here, Q 2 R, M > 0, � � 0, r

0

and r

+

are respe
tively the ele
tri
 
harge, the mass, the 
osmologi
al


onstant, the radius of the horizon of the bla
k-hole and the radius of the 
osmologi
al horizon. We have

F (r

0

) = F (r

+

) = 0; 2�

0

= F

0

(r

0

) > 0; 2�

+

= F

0

(r

+

) < 0; r 2℄r

0

; r

+

[) F (r) > 0:

with �

0

, �

+

the surfa
e gravity at the bla
k hole horizon and at the 
osmologi
al horizon. If � = 0 then

F (r) = 1�

2M

r

+

Q

2

r

2

; 0 < jQj �M;

r

0

=M +

p

M

2

�Q

2

; r

+

= +1;

and the globally hyperboli
 manifold (M

bh

; g) des
ribes the Reissner-Nordstr�m spa
e-time whi
h is

asymptoti
ally 
at at spatial in�nity. We introdu
e a radial 
oordinate r

�

, whi
h straightens the radial
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null geodesi
s:

r

�

=

1

2�

0

�

ln(r � r

0

)�

Z

r

r

0

�

1

x� r

0

�

2�

0

F (x)

�

dx

�

+ 
; r 2℄r

0

; r

+

[; 
 2 R; (2)

dr

�

dr

= F

�1

: (3)

This 
oordinate shifts the horizon of the bla
k-hole to the negative in�nity and the 
osmologi
al horizon

to the positive in�nity.

As we 
onsider a bla
k-hole 
reated by the 
ollapse of spheri
al 
harged star, if the exa
t spheri
al

symmetry of the star in 
ollapsing is maintained, outside of it, the (DeSitter-)Reissner-Nordstr�m geom-

etry is relevant thanks to Birko�'s theorem [15℄, [20℄. Hen
e the spa
e-time outside the spheri
al 
harged

star with r

�

-radius z(t); t 2 R, is the manifold (M


oll

; g) su
h that :

M


oll

:=

�

(t; r

�

; !) 2 R

t

� R

r

�

� S

2

!

; r

�

� z(t)

	

; (4)

= [

t2R

�

ftg�℄z(t);+1[

r

�

�S

2

!

�

:

Following the general geometri
al dis
ussion about the same problem in [2℄ and [4℄, the reasonable as-

sumptions of generi
 
ollapse lead to the following properties for z(t):

z 2 C

2

(R); 8t 2 R; � 1 < _z(t) � 0; (5)

z(t) = �t� C

�

0

e

�2�

0

t

+$(t); C

�

0

> 0; j$(t)j + j _$(t)j = O

�

e

�4�

0

t

�

; t! +1: (6)

We suppose the star stationary in the past. Moreover, we arbitrarily 
hoose 
 in (2), su
h that for all

t � 0,

z(t) = z(0) < 0:

If we 
onsider ray of light leaving x

0

at t = 0, with z(0) � x

0

< 0, then �(x

0

) is the time where the ray

is re
e
ted by the surfa
e of the star,

S :=

[

t2R

f(t; z(t))g � S

2

!

;

su
h that �(x

0

) is the unique solution of

z(�(x

0

)) + �(x

0

) = x

0

: (7)

Thanks to the property (6), we have also (see [1℄):

�(x

0

) = �

1

2�

0

ln(�x

0

) +

1

2�

0

ln(C

�

0

) +O(x

0

); x

0

! 0

�

; C

�

0

> 0; (8)

1 + _z(�(x

0

)) = �2�

0

x

0

+O(x

2

0

); x

0

! 0

�

: (9)

3 The Dira
 equation.

For the spin 1/2 parti
les with real 
harge q and mass m > 0, the Dira
 equation on (M


oll

; g), has the

general form (see and [4℄ and [22℄)

"

i


0

p

F

�

�

t

+ i

qQ

r

�

+

i


1

p

F

 

�

r

�

+

F

r

+

F

0

4

!

+

i


2

r

�

�

�

+

1

2


ot �

�

+

i


3

r sin �

�

'

�m

#

	 = 0 (10)

where the Dira
 matri
es 


k

, satisfy




a




b

+ 


b




a

= 2�

ab

I

I

I

R

4

; a; b = 0; ::; 3; �

ab

= Diag(1;�1;�1;�1): (11)




0

= i

�

0 �

0

��

0

0

�

; 


k

= i

�

0 �

k

�

k

0

�

k = 1; 2; 3; (12)
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with the Pauli matri
es,

�

0

=

�

1 0

0 1

�

; �

1

=

�

1 0

0 �1

�

; �

2

=

�

0 1

1 0

�

; �

3

= i

�

0 �1

1 0

�

: (13)

On the star surfa
e, we put the following boundary 
ondition, written for (t; r

�

; !) 2 S, as

n

j




j

	(t; r

�

; !) = B	 (14)

where n

j

is the outgoing normal of subset of R

t

�R

r

�

�S

2

!

and B some operator lo
al in time, rotationally

invariant and whi
h 
onserves the L

2

norm. We 
hoose B su
h that (14) forms a family indexed by a

parameter � of non equivalent boundary 
onditions: the generalized MIT boundary 
ondition (see [6℄),

B

�

MIT

de�ned by

B

�

MIT

:= ie

i�


5

	(t; r

�

; !); 


5

:= �i


0




1




2




3

= diag(1; 1;�1;�1) (15)

where the parameter � is the 
hiral angle. We suppose that � 2 R if m > 0 with r

+

< +1, and

� 6= (2k + 1)�, k 2 Z if m > 0 with r

+

= +1. We introdu
e the Hilbert spa
es:

L

2

t

:= L

2

(℄z(t);+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

; L

2

BH

:= L

2

(R

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

: (16)

The norms of these spa
es are denoted by k:k

t

and k:k. Moreover for � 2 L

2

t

,

k�k

t

= k[�℄

L

k ; [�℄

L

(r

�

; !) =

�

�(r

�

; !) r

�

2℄z(t);+1[

r

�

0 r

�

2 Rn℄z(t);+1[

r

�

:

Hen
e, respe
tively, on (M


oll

; g) and on (M

bh

; g), we 
onsider the hyperboli
 mixed problems:

�

t

	 = iD

t

	; z(t) < r

�

; (17)

_z


0

� 


1

p

1� _z

2

	(t; z(t)) = ie

i�


5

	(t; z(t)) (18)

	(t = s; :) = 	

s

(:) 2 L

2

s

; (19)

and

�

t

	 = iD

BH

	 (20)

	(t = 0; :) = 	

BH

(:) 2 L

2

BH

; (21)

with, D

t

de�ned on L

2

t

and D

BH

de�ned on L

2

BH

, su
h that:

D

t

;D

BH

= �

qQ

r

+ �

1

 

�

r

�

+

F (r)

r

+

F

0

(r)

4

!

+

p

F (r)

�

�

2

r

(�

�

+

1

2


ot �) +

�

3

r sin �

�

'

+ �

4

�

; (22)

�

1

:= i


0




1

= iDiag(�1; 1; 1;�1); �

2

:= i


0




2

; �

3

:= i


0




3

; �

4

:= �m


0

; (23)

D(D

t

) =

�

	 2 L

2

t

; D

t

	 2 L

2

t

;

_z


0

� 


1

p

1� _z

2

	(z(t); !) = ie

i�


5

	(z(t); !)

�

(24)

and

D(D

BH

) =

�

	 2 L

2

BH

; D

BH

	 2 L

2

BH

	

: (25)

Proposition III.2 in [4℄ gives the solution 	(t) of the hyperboli
 problem (17), (18) and (19) expressed

with the propagator U (t; s):
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Proposition 3.1

Given 	

s

2 D(D

s

), there exists [	(:)℄

L

= [U (:; s)	

s

℄

L

2 C

1

(R

t

;L

2

BH

) solution of (17), (18) and (19)

su
h that, for all t 2 R

	(t) 2 D(D

s

):

Moreover,

k	(t)k

t

= k	

s

k

s

and U (t; s) 
an be extended in an isometri
 strongly 
ontinuous propagator from L

2

s

onto L

2

t

.

For the eternal bla
k-hole, we have (see theorem 4.1 in [17℄):

Proposition 3.2

D

BH

is a densely de�ned self-adjoint operator on L

2

BH

, hen
e the Cau
hy problem (20) (21) has a unique

solution 	 2 C

0

(R

t

;L

2

BH

), given by the strongly 
ontinuous unitary group U (t) := e

itD

BH

:

	(t) = U (t)	

BH

; 	(0) = 	

BH

; k	(t)k = k	

BH

k:

4 S
attering by an eternal bla
k-hole

Sin
e the Hawking e�e
t arises from an asymptoti
 study of the �elds, we de�ne the wave operators for

the eternal 
harged bla
k-hole. Near the bla
k-hole horizon (resp. near the 
osmologi
al horizon when

� 6= 0), we 
ompare the solution of (20) on L

2

BH

with the solution of

�

t

	

 

= iD

 

	

 

�

resp: �

t

	

!

=D

�;!

	

!

�

where

D

 

:= �

1

�

r

�

�

qQ

r

0

�

resp: D

�;!

:= �

1

�

r

�

�

qQ

r

+

�

is self-adjoint on

L

2

 

:= L

2

(R

r

�

� S

2

!

; dr

�

d!)

4

; (resp: L

2

�;!

:= L

2

 

; � > 0);

with the dense domain

D(D

 

) = H

1

(R

r

�

;L

2

(S

2

!

))

4

�

resp: D(D

�;!

) = H

1

(R

r

�

;L

2

(S

2

!

))

4

�

:

Thanks to the form of �

1

, we de�ne the subspa
es of outgoing and in
oming waves L

2+

 

and L

2�

 

su
h

that L

2

 

= L

2+

 

�L

2�

 

,

L

2+

 

:= f	 2 L

2

 

; 	

2

= 	

3

= 0g; L

2�

 

:= f	 2 L

2

 

; 	

1

= 	

4

= 0g; (26)

L

2

�;!

= L

2+

�;!

�L

2�

�;!

; L

2+

�;!

:= L

2+

 

; L

2�

�;!

:= L

2�

 

:

We introdu
e for the two asymptoti
 regions, respe
tively the identifying operator between L

2

 

and L

2

BH

and the one between L

2

�;!

and L

2

BH

:

J

 

: 	

�

(r

�

; !) 7! �

 

(r

�

)r

�1

F

�1=4

(r)	

�

(r

�

; !); 	

�

2 L

2�

 

;

J

�;!

: 	

�

(r

�

; !) 7! �

!

(r

�

)r

�1

F

�1=4

(r)	

�

(r

�

; !); 	

�

2 L

2�

�;!

;

where �

 

and �

!

are 
ut-o� fun
tions,

�

 

2 C

1

(R

r

�

); 9 a; b 2 R; 0 < a < b < 1 �

 

(r

�

) =

�

1 r

�

< a

0 r

�

> b

; �

!

= 1� �

 

: (27)
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If � > 0, we de�ne the wave operators W

�

 

at the bla
k-hole horizon and W

�

�;!

at the 
osmologi
al

horizon, by

W

�

 

	

�

= lim

t!�1

U (�t)J

 

e

itD

 

	

�

in L

2

BH

; 	

�

2 L

2�

 

; (28)

W

�

�;!

	

�

= lim

t!�1

U (�t)J

�;!

e

itD

�;!

	

�

in L

2

BH

; 	

�

2 L

2�

�;!

: (29)

When � = 0, the spa
e-time is asymptoti
ally 
at at the in�nity. Hen
e, we 
ompare the solutions of (17)

on L

2

BH

with the solution 	

!

of the Dira
 equation on Minkowski spa
e-time with spheri
al 
oordinates

(�; !) 2 R

+

�

� [0; �℄� [0; 2�[, putting r

�

= � > 0 to avoid arti�
ial long-range intera
tions :

�

t

	

!

= iD

0;!

	

!

where

D

0;!

:= �

1

�

�

�

+

1

�

�

+

�

2

�

(�

�

+

1

2


ot �) +

�

3

� sin �

�

'

+ �

4

;

is self-adjoint on

L

2

0;!

:= L

2

(R

+

�

� S

2

!

; �

2

d�d!)

4

with the dense domain

D(D

0;!

) = H

1

(R

+

�

� S

2

!

; �

2

d�d!)

4

:

We de�ne the Dira
 operator with Cartesian 
oordinates

�

D

0;!

on L

2

(R

3

x

)

4

, with the help of the isometry

T between L

2

(R

3

x

)

4

and L

2

0;!

, su
h that :

T :

�

	(x) 7! 	(�; !) = T

�

	(x); T = e

'

2




1




2

e

�

�

4




2




3

e

(

�

2

�

�

4

)




1




2

TD

0;!

T

�1

=

�

D

0;!

= �:p

p

p+m�; � = i(�

1

;�

2

;�

3

); � = �


0

; p

p

p = �ir:

The previous 
omparison involves long-range perturbations due to the mass and the 
harge. Then, as in

[17℄ and [19℄, we 
onstru
t the Dollard-modi�ed propagator U

0;!

(t) :

U

0;!

(t) := T u(t)T

�1

; u(t) := e

it�(p

p

p)

e

iX

+

(t)

P

0

+

+ e

�it�(p

p

p)

e

iX

�

(t)

P

0

�

; (30)

X

�

(t) := �m

2

M

log(t)

ju

u

u(p

p

p)j�(p

p

p)

� qQ

log(t)

ju

u

u(p

p

p)j

; �(p

p

p) :=

p

jp

p

pj

2

+m

2

; u

u

u(p

p

p) := p

p

p=�(p

p

p);

log(t) := tjtj

�1

ln jtj; P

0

�

:= 1=2(1�

�

D

0;!

=�(p

p

p)):

We de�ne the bounded identifying operator J

0;!

between L

2

0;!

and L

2

BH

:

(J

0;!

	)(r

�

; !) :=

�

�

!

(� = r

�

)r

�1

F

�1=4

(r)r

�

	(� = r

�

; !) r

�

> 0

0 r

�

� 0

; 8	 2 L

2

0;!

;

and in the 
ase of � = 0 the wave operatorW

�

0;!

at in�nity, for all 	 2 L

2

0;!

:

W

�

0;!

	 = lim

t!�1

U (�t)J

0;!

U

0;!

(t)	 in L

2

BH

; (31)

Then, we state the theorem whi
h is proved in the last part of this work:

Theorem 4.1

The operators W

�

 

, W

�

�;!

and W

�

0;!

, respe
tively on L

2�

 

, L

2�

�;!

and L

2

0;!

exist and are independent of

�

 

, �

!

and �

!

satisfying (114). Moreover :

kW

�

 

	

�

k = k	

�

k

L

2

 

; 8	

�

2 L

2�

 

; (� � 0; m � 0);

kW

�

�;!

	

�

k = k	

�

k

L

2

�;!

; 8	

�

2 L

2�

�;!

; (� > 0; m � 0);

kW

�

0;!

	k = k	k

L

2

0;!

; 8	 2 L

2

0;!

; (� = 0; m > 0);

6



and

Ran

�

W

�

 

�W

�

�;!

�

= L

2

BH

; (� � 0):

5 Dira
 Quantum Field and Hawking e�e
t

5.1 Se
ond quantization of the Dira
 �elds

We de�ne the framework of the Quantum Field Theory to des
ribe the Hawking e�e
t. We use the

approa
h of the algebras of lo
al observables on 
urved spa
e-time introdu
ed by J. Dimo
k in [8℄ and [9℄.

First, we de�ne the Fermi-Dira
 Fo
k spa
e whi
h des
ribes the state with an arbitrary number of non

intera
ting 
harged fermions. Given, (H; < :; : >

H

) a 
omplex Hilbert spa
e and � the 
harge 
onjugation

(see [24℄ se
tion 1.4.6), then we split H into two orthogonal spe
tral subspa
es

H = H

+

� H

�

; H

+

:= P

+

H; H

�

:= P

�

H; (32)

where, P

+

and P

�

are the spe
tral proje
tors on positive and negative subspa
es. We de�ne, F

(1)

(H

+

)

and F

(1)

(H

�

), respe
tively the one parti
le spa
e and the one anti-parti
le spa
e su
h that

F

(1)

(H

+

) := H

+

; F

(1)

(H

�

) := �H

�

: (33)

To treat various numbers of parti
les and anti-parti
les, we re
all the de�nition of the Fermi-Dira
 Fo
k

spa
e:

F(H) :=

+1

M

n;m=0

F

(n;m)

; F

(n;m)

(H) := F

(n)

(H

+

)
 F

(m)

(H

�

); (34)

where

F

(0)

(H

+

) := C ; F

(0)

(H

�

) := C ; F

(n)

(H

+

) :=

n

^

k=1

H

+

; F

(m)

(H

�

) :=

m

^

k=1

�H

�

: (35)

An element  of F(H) 
onsists of sequen
e  = ( 

(n;m)

)

n;m2N

, with  

(n;m)

2 F

(n;m)

(H). The va
uum

ve
tor is the ve
tor 


va


2 F(H) satisfying

(n;m) = (0; 0)) 


(0;0)

va


= 1; (n;m) 6= (0; 0)) 


(n;m)

va


= 0: (36)

We de�ne the quantized Dira
 �eld operator 	

	

	 and its adjoint 	

	

	

�

:

f 2 H 7�!	

	

	(f) := a(P

+

f) + b

�

(�P

�

f) 2 L(H);

f 2 H 7�!	

	

	

�

(f) := a

�

(P

+

f) + b(�P

�

f 2 L(H);

where a(P

+

f), a

�

(P

+

f), b(P

�

f), b

�

(P

�

f) are respe
tively the parti
le annihilation, 
reation operators

and the anti-parti
le annihilation, 
reation operators. The quantized Dira
 �eld is an anti-linear and

bounded operator and, thanks to the 
lassi
al properties of the 
reations and annihilations operators, it

satis�es the 
anoni
al anti-
ommutation relations (CAR). We 
onsider the C

�

-algebra U(H) generated by

the �eld operators 	

	

	

�

(f)	

	

	(g), with f; g 2 H. For an observable A 2 U(H), we de�ne the va
uum state

as !

va


(A) :=< A


va


;


va


>

H

. Then, by straightforward 
omputation and for f; g 2 H, we have

!

va


(	

	

	

�

(f)	

	

	(g)) =< P

�

f; g >

H

: (37)
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Given a Dira
-type equation, with Hamiltonian H , satis�ed by the one parti
le �eld f

D

:

�

t

f

D

= iH f

D

;

we 
hoose the spe
tral proje
tors P

+

and P

�

su
h that

P

+

:= 1

℄�1;0℄

(H ); P

�

:= 1

[0;+1[

(H ): (38)

On U(H), we also introdu
e the KMS state !

Æ;�

KMS

depending on � > 0 and Æ 2 R, su
h that for f; g 2 H:

!

Æ;�

KMS

(	

	

	

�

(f)	

	

	(g)) :=< �e

�H

(1 + �e

�H

)

�1

f; g >

H

; � := e

�Æ

: (39)

The restri
tion of this KMS state to the sub-algebra U(H

+

) (resp. U(H

�

)) of U(H), 
orresponds to the

Gibbs equilibrium state des
ribing the thermodynami
 models for nonintera
ting Fermi parti
les (resp.

anti-parti
les) with temperature �

�1

> 0 and 
hemi
al potential Æ (resp. �Æ).

As J. Dimo
k [9℄, we 
onstru
t the algebra of lo
al observables in the spa
e-time outside the 
ollapsing

star, with the help of a given CAR representation on a Cau
hy hyper-surfa
e. In fa
t this 
onstru
tion

does not depend on the 
hoi
e of the CAR representation, the spin stru
ture and the hyper-surfa
e.

Then, in parti
ular, we 
onsider the Fermi-Dira
 Fo
k representation and the following foliation of the

globally hyperboli
 manifold:

M


oll

=

[

t2R

�

t

; �

t

:= ftg�℄z(t);+1[

r

�

�S

2

!

:

We 
onsider �

0

, and we put

H := L

2

(℄z(0);+1[�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

= L

2

0

; H :=D

0

(40)

Using the previous de�nition of Dira
 quantum �eld, we de�ne on L

2

0

the quantized Dira
 �eld 	

	

	

0

and

U(H) the C

�

-algebra generated by 	

	

	

�

0

(�

1

)	

	

	

0

(�

2

), with �

1

;�

2

2 H. We introdu
e the following operator

S


oll

: � 2 C

1

0

(M


oll

)

4

7�! S


oll

� :=

Z

R

U (0; t)�(t)dt 2 L

2

0

; (41)

where U (0; t) is the propagator de�ned in proposition 3.1. Then, we de�ne the lo
al quantum �eld in

M


oll

by the operator:

	

	

	


oll

: � 2 C

1

0

(M


oll

)

4

7�! 	

	

	


oll

(�) := 	

	

	

0

(S


oll

�); (42)

and, for any open set O � M


oll

, we introdu
e U(O) the C

�

-algebra generated by 	

	

	

�


oll

(�

1

)	

	

	


oll

(�

2

),

supp(�

j

) � O, j = 1; 2. Finally, we have:

U(M


oll

) = adh

 

[

O

U(O)

!

:

Then, thanks to (37), (38) and (40), we de�ne on U(M


oll

) a ground state !

M


oll

as following:

!

M


oll

(	

	

	

�


oll

(�

1

)	

	

	


oll

(�

2

)) := !

va


(	

	

	

�

0

(S


oll

�

1

)	

	

	

0

(S


oll

�

2

)); �

1

;�

2

2 H (43)

=< 1

[0;+1[

(D

0

)S


oll

�

1

; S


oll

�

2

>

H

We des
ribe the quantum �eld at the horizon of future ba
k-hole. We 
onsider the stationary spa
e-time

M

bh

with the asso
iated Dira
 Hamiltonian D

 

for the one parti
le �eld. Using the Fermi-Dira
 Fo
k

quantization on R

r

�

� S

2

!

, we de�ne the �eld 	

	

	

�

(�) with � 2 L

2

 

, and the operator S

 

su
h that

S

 

: � 2 C

1

0

(M

bh

)

4

7�! S

 

� :=

Z

R

e

�itD

 

�(t)dt: (44)
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We also introdu
e

	

	

	

 

: � 2 C

1

0

(M

bh

)

4

7�!	

	

	

 

(�) := 	

	

	

�

(S

 

�); (45)

and the C

�

-algebra U

 

(M

bh

) generated by 	

	

	

 

(	

1

)	

	

	

�

 

(	

2

), �

1

;�

2

2 L

2

 

. Using (39), we 
onsider the

Hawking thermal state:

!

Æ;�

Haw

(	

	

	

�

 

(�

1

)	

	

	

 

(�

2

)) := !

Æ;�

KMS

(	

	

	

�

�

(S

 

�

1

)	

	

	

�

(S

 

�

2

)); �

1

;�

2

2 C

1

0

(M

bh

)

4

(46)

=< �e

�D

 

(1 + �e

�D

 

)

�1

S

 

�

1

; S

 

�

2

>

L

2

 

; (47)

with

� := e

�Æ

; Æ 2 R; � > 0: (48)

Now, we des
ribe the quantum �eld at the spatial in�nity of the future bla
k-hole. A

ording to � whi
h

is respe
tively positive or zero (
osmologi
al horizon or asymptoti
ally 
at spa
e-time), we 
onsider the

stationary spa
e-times M

bh

or M

flat

:= R

t

� R

+

r

�

� S

2

!

, with the Dira
 Hamiltonian asso
iated to a one

parti
le �eldD

�;!

andD

0;!

. As above, using the Fermi-Dira
 Fo
k quantization on R

r

�

�S

2

!

or R

+

r

�

�S

2

!

,

we de�ne the �elds 	

	

	

�;+

(�

1

) with �

1

2 L

2

�;!

or 	

	

	

0;+

(�

1

) with �

1

2 L

2

0;!

and the operators S

�;!

or S

0;!


hara
terized by:

S

�;!

: � 2 C

1

0

(M

bh

)

4

7�! S

�;!

� :=

Z

R

e

�itD

�;!

�(t)dt; � > 0; (49)

S

0;!

: � 2 C

1

0

(M

flat

)

4

7�! S

0;!

� :=

Z

R

U

0;!

(�t)�(t)dt; (50)

where U

0;!

is the Dollard-modi�ed propagator given by formula (30). Then, we 
onstru
t the C

�

-

algebras U

!

(M

bh

) and U

!

(M

flat

), respe
tively generated by 	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

) with �

1

; �

2

2 L

2

�;!

and 	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

) with �

1

;�

2

2 L

2

0;!

, where

	

	

	

�;!

: � 2 C

1

0

(M

bh

)

4

7�! 	

	

	

�;!

(�) := 	

	

	

�;+

(S

�;!

�); � > 0; (51)

	

	

	

0;!

: � 2 C

1

0

(M

flat

)

4

7�! 	

	

	

0;!

(�) := 	

	

	

0;+

(S

0;!

�): (52)

With (37), the va
uum states on ea
h algebras U

!

(M

bh

) and U

!

(M

flat

) are given by

!

va


(	

	

	

�

�;!

(�

1

)	

	

	

�;!

(�

1

)) =< P

�

�

S

�;!

�

1

; S

�;!

�

2

>

L

2

�;!

; � > 0; (53)

�

1

;�

2

2 C

1

0

(M

bh

); P

�

�

:= 1

[0;1[

(D

�;!

); (54)

!

va


(	

	

	

�

0;!

(�

1

)	

	

	

0;!

(�

1

)) =< P

0

�

S

0;!

�

1

; S

0;!

�

2

>

L

2

0;!

; (55)

�

1

;�

2

2 C

1

0

(M

flat

); P

0

�

:= 1

[0;1[

(D

0;!

): (56)

Sin
e we are interested in the state of the quantum �eld at the last moment of gravitational 
ollapse, we

investigate the following limit:

lim

T!+1

!

M


oll

(	

	

	

�


oll

(�

T

1

)	

	

	


oll

(�

T

2

));

where

�

T

j

(t; r

�

; !) := �

j

(t� T; r

�

; !); �

j

2 C

1

0

(M


oll

)

4

; j = 1; 2;

and, !

M


oll

and 	

	

	


oll

are de�ned by (43) and (42). Then, we state the main theorem of this work
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Theorem 5.1 (Main result)

Given �

j

2 C

1

0

(M


oll

)

4

; j = 1; 2, then we have for � � 0,

lim

T!+1

!

M


oll

(	

	

	

�


oll

(�

T

1

)	

	

	


oll

(�

T

2

)) = !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))

+ !

va


(	

	

	

�

�;!

(


�

�;!

�

1

)	

	

	

�;!

(


�

�;!

�

2

));

with

T

Haw

=

1

�

=

2�

�

0

; Æ =

qQ

r

0

:

Proof of theorem 5.1 :

For � 2 C

1

0

(M


oll

)

4

, by the identity of polarization, it is suÆ
ient to evaluate

lim

T!+1

!

M


oll

(	

	

	

�


oll

(�

T

)	

	

	


oll

(�

T

)) = lim

T!+1







1

[0;+1[

(D

0

) S


oll

�

T







2

0

;

= lim

T!+1







1

[0;+1[

(D

0

) U (0; T )S

bh

�







2

0

; (57)

be
ause for T > 0 large enough, we have:

S


oll

�

T

= U (0; T )S

bh

�; S

bh

� :=

Z

R

U (�t)�(t)dt:

Then, we use the key theorem that we prove in the next se
tion:

Theorem 5.2

Given f 2 L

2

BH

, if � � 0, then

lim

T!+1







1

[0;+1[

(D

0

) U (0; T )f







2

0

=










1

[0;+1[

(D

�;!

)


�

�;!

f










2

L

2

�;!

+ < 


�

 

f; �e

�D

 

�

1 + �e

�D

 

�

�1




�

 

f >

L

2

 

(58)

with

� = e

�Æ

; Æ :=

qQ

r

0

� =

2�

�

0

; 


�

 

:=

�

W

�

 

�

�

; 


�

�;!

:=

�

W

�

�;!

�

�

; 


�

0;!

:=

�

W

�

0;!

�

�

;

where W

�

 

, W

�

�;!

, W

�

0;!

are the wave operators respe
tively de�ned in (28), (29) and (31).

A

ording to (57) and the previous theorem, for � � 0, we dedu
e that :

lim

T!+1

!

M


oll

(	

	

	

�


oll

(�

T

)	

	

	


oll

(�

T

)) =










1

[0;+1[

(D

�;!

)


�

�;!

S

bh

�










2

L

2

�;!

;

+ < 


�

 

S

bh

�; �e

�D

 

�

1 + �e

�D

 

�

�1




�

 

S

bh

� >

L

2

 

=










1

[0;+1[

(D

�;!

)S

�;!




�

�;!

�










2

L

2

�;!

;

+ < S

 




�

 

�; �e

�D

 

�

1 + �e

�D

 

�

�1

S

 




�

 

� >

L

2

 

= !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))

+ !

va


(	

	

	

�

�;!

(


�

�;!

�)	

	

	

�;!

(


�

�;!

�)):
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5.2 Dis
ussion

The interpretation of the previous theorem in terms of parti
les is more diÆ
ult. Indeed, there are as

many de�nitions of parti
les as types of observators. In the Minkowski spa
e time and thanks to the

Lorentz transformations, we naturally de�ne the parti
les linked to the inertial observators. For the

general 
urved spa
e-times, we have not the similar transformations and the notion of parti
les is rather

vague. In Theorem 5.1, the state !

M


oll

(	

	

	

�


oll

(�

T

)	

	

	


oll

(�

T

)) gives informations at the time T of a dete
tor

�xed with the respe
t to the variables (r

�

; !) measuring the 
u
tuation of the quantum �eld outside the


ollapsing star. The dete
tor is put in the Boulware va
uum that 
orresponds to the 
lassi
al 
on
ept of

va
uum state for a stati
 observer. This last theorem gives the response of the dete
tor at their own in�nite

proper time (T = +1), whi
h 
orresponds to the last moments of gravitational 
ollapse. On the hand,

the term !

va


(	

	

	

�

�;!

(


�

�;!

�

1

)	

	

	

�;!

(


�

�;!

�

2

)) proves that the de
te
tor measures merely a va
uum 
oming

from the past in�nity and falling into the bla
k hole. On the other hand, !

Æ;�

Haw

(	

	

	

�

 

(


�

 

�

1

)	

	

	

 

(


�

 

�

2

))


orresponds to the emergen
e of a thermal state at temperature T

Haw


oming from the vi
inity of the

bla
k hole. An observer at rest with respe
t to 
oordinates (r

�

; !) will interpret as t! +1 this thermal

state like a 
ux of fermioni
 and anti-fermioni
s parti
les leaving the future bla
k hole. The result is

independent of the history of the 
ollapse and the boundary 
ondition on the star surfa
e. Indeed, we


an easily prove the same theorem putting the more general MIT Bag boundary 
ondition (see [4℄):

B := i

X

(ln)2I

e

i�

l;n




5

P

ln

where P

ln

is the orthogonal L

2

(S

2

!

)-proje
tor on V e
t(Y

ln

), (see (68)) and �

l;n

a sequen
e whi
h satis�es

the same 
onditions as � in the third se
tion about the MIT Bag boundary 
ondition. Moreover, for a

Lebesgue measurable subset B of R

r

�

� S

2

!

with 0 < jBj < +1, lemma A.2 in [4℄ gives respe
tively the

expression of the density of parti
les D

+

B

(!

Æ;�

KMS

), of antiparti
les D

�

B

(!

Æ;�

KMS

) and the 
harge density �

Haw

for the gas of fermions 
reate at the vi
inity of the bla
k-hole horizon in the subset B:

D

+

B

(!

Æ;�

KMS

) := B

�1

X

!

Æ;�

KMS

(a

�

(P

+

 

�

j

)a(P

+

 

�

j

)) =

1

��

ln(1 + e

�Æ

); (59)

D

�

B

(!

Æ;�

KMS

) := B

�1

X

!

Æ;�

KMS

(a

�

(P

�

 

�

j

)a(P

�

 

�

j

)) =

1

��

ln(1 + e

��Æ

); (60)

P

+

 

:= 1

℄�1;0℄

(D

 

); P

�

 

:= 1

[0;+1[

(D

 

); (61)

�

Haw

:= q

�

D

+

B

(!

Æ;�

KMS

) +D

�

B

(!

Æ;�

KMS

)

�

=

1

�

qÆ =

q

2

Q

�r

0

; (62)

where (�

j

)

j2N

is an orthonormal basis of fS

 




�

 

� 2 L

2

BH

: (r

�

; !) =2 B ) S

 




�

 

�(r

�

; !) = 0g. Sin
e

�

Haw

and Q have the same sign, we 
on
lude that the bla
k-hole preferentially emits 
harged parti
les

with the same sign as its own 
harge.

We emphasize that the interpretation of theorem 5.1 is valid only in semi
lassi
al regime. Indeed,

we suppose that the bla
k hole that we 
onsider has a suÆ
iently large mass in order to be able to use

the 
lassi
al theory of General Relativity to model the gravitational �eld but also to negle
t the ba
k

rea
tion of the quantum �elds. Thanks to theorem 5.1, we 
an 
onje
ture that the bla
k hole loses its


harge and its mass. Therefore, if we want to study this evaporation, we 
an not negle
t the ba
k rea
tion

of the Hawking e�e
t. But for that, it would be ne
essary to study a non linear problem of a very great


omplexity.

6 Proofs of the main theorems.

This se
tion is organized as follow: in the �rst subpart, thanks to the spheri
al symmetry property of the

geometri
al framework, we redu
e (17) and (20) to a family of one dimensional problems. This redu
tion

11



will be useful for the next subparts. In the se
ond part, we prove theorem 4.1 on the s
attering theory

in the eternal 
harged bla
k-hole. In the third part, we demonstrate theorem 5.2 on the sharp estimate

of 1

[0;+1[

(D

0

)U (0; T ).

6.1 Redu
tion to a one dimensional problem.

To redu
e problems (17) and (20), we use spin-weighted harmoni
s Y

l

�

1

2

;n

(see [12℄, [17℄). The families

n

Y

l

1

2

;n

; (l; n) 2 I

o

;

n

Y

l

�

1

2

;n

; (l; n) 2 I

o

; I :=

�

(l; n) : l�

1

2

2 N; l� jnj 2 N

�

;

form a Hilbert basis of L

2

(S

2

!

) and ea
h Y

l

sn

, s = �1=2 satis�es the re
urren
e relations,

�

�

Y

l

sn

(!)�

n� s 
os �

sin �

Y

l

sn

(!) =

�

�

�

�

�i

p

(l � s)(l � s+ 1)Y

l

s�1;n

(!); �l > �s:

0; l = �s:

; (63)

�

'

Y

l

sn

(!) = �inY

l

sn

(!): (64)

We introdu
e the Hilbert spa
es to treat the one dimensional problem respe
tively outside, the 
harged


ollapsing star and the eternal bla
k hole:

0 � t; L

2

t

:= L

2

(℄z(t);+1[

r

�

; dr

�

)

4

; L

2

R

:= L

2

(R

r

�

; dr

�

)

4

; L

2

BH

:= L

2

(R

r

�

; r

2

F

1=2

(r)dr

�

)

4

: (65)

The norm of L

2

t

and L

2

R

are respe
tively denoted by k:k

t

and k:k. Moreover for � 2 L

2

(B; dr

�

)

4

, B � R,

k�k

L

2

(B; dr

�

)

4

= k[�℄

L

k ; [�℄

L

(r

�

) :=

�

�(r

�

) r

�

2 B

0 r

�

2 R nB

:

In the same way, we de�ne

0 � t; H

1

t

:=

�

� 2 L

2

t

; �

r

�

� 2 L

2

t

	

; H

1

R

:=

�

� 2 L

2

R

; �

r

�

� 2 L

2

R

	

;

and moreover for � 2 H

1

t

we have,

[�℄

H

2 H

1

R

; [�℄

H

(r

�

) :=

�

�(r

�

) r

�

2℄z(t);+1[

r

�

�(2z(t)� r

�

) r

�

2 Rn℄z(t);+1[

r

�

:

Hen
e, for 0 � t � +1, and putting

P

r

: 	 7! r

�1

F

�1=4

	; (66)

any 	 2 L

2

t

or L

2

BH

, where 	

ln

2 P

r

L

2

t

or P

r

L

2

R


an be written in the following way:

	(r

�

; !) =

X

(l;n)2I

	

ln

(r

�

)


4

Y

ln

(!); (67)

v 


4

u := (u

1

v

1

; u

2

v

2

; u

3

v

3

; u

4

v

4

); 8u; v 2 C

4

;

Y

ln

:=

�

Y

l

�

1

2

;n

; Y

l

1

2

;n

; Y

l

�

1

2

;n

; Y

l

1

2

;n

�

: (68)

We de�ne,

R

�

ln

: 	 2 L

2

t

7! e

i

�

2




5

P

�1

r

	

ln

2 L

2

t

; (69)

R

BH

ln

: 	 2 L

2

BH

7! 	

ln

2 P

r

L

2

R

(70)

E

�

ln

: 	

ln

2 L

2

t

7! e

�i

�

2




5

P

r

	

ln




4

Y

ln

2 L

2

t

; (71)

E

BH

ln

: 	

ln

2 P

r

L

2

R

7! 	

ln




4

Y

ln

2 L

2

BH

: (72)
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to express L

2

t

and L

2

BH

as a dire
t sum:

L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

; L

2

BH

=

M

(l;n)2I

E

BH

ln

L

2

BH

=

M

(l;n)2I

E

�

ln

L

2

R

: (73)

With (63), (64) and s = �1=2, we obtain

D

t

=

M

(l;n)2I

E

�

ln

D

V

l;�

;t

R

�

ln

�

qQ

r

0

; (74)

D

V

l;�

;t

:= �

1

�

r

�

+ V

l;�

; V

l;�

= qQ

�

1

r

0

�

1

r

�

�

p

F (r)

�

mA

�

+

i

r

�

2

(l + 1=2)

�

; (75)

A

�

:=

�

0 a

�

�a

�

0

�

; a

�

:= diag(ie

i�

; ie

i�

); Z(t) =

s

1� _z(t)

1 + _z(t)

; (76)

D(D

V

l;�

;t

) =

�

	 2 L

2

t

; D

V

l;�

;t

	 2 L

2

t

;

Z(t)	

2

(z(t)) = 	

4

(z(t)); 	

1

(z(t)) = �Z(t)	

3

(z(t))g (77)

and

D

BH

=

M

(l;n)2I

E

BH

ln

D

BH

R

BH

ln

; D

BH

= �

1

�

�

r

�

+

F (r)

r

+

1

4

F (r)

�

+ V

BH

(78)

V

BH

= �

qQ

r

�

p

F (r)

�

i

r

�

2

(l + 1=2)� �

4

�

; (79)

D(D

BH

) =

�

	 2 L

2

BH

; D

BH

	 2 L

2

BH

	

: (80)

Therefore, 	 is solution of problem (17), (18) and (19) if and only if, for all (l; n) 2 I,

�(t; r

�

) := e

itqQr

�1

0

R

�

ln

	(t; r

�

)

is solution of

�

t

� = iD

V

l;�

;t

�; t 2 R; r

�

> z(t); (81)

Z(t)�

2

(t; z(t)) = �

4

(t; z(t)); � Z(t)�

3

(t; z(t)) = �

1

(t; z(t)); (82)

�(t = s; :) = �

s

(:) := R

�

ln

	

s

(:) 2 L

2

s

: (83)

In the same way, 	 is solution of problem (20) and (21) if and only if, for all (l; n) 2 I,

�(t; r

�

) := R

BH

ln

	(t; r

�

)

is solution of

�

t

� = iD

BH

�; (84)

�(t = 0; :) = �

BH

:= R

BH

ln

	

BH

2 L

2

BH

: (85)

In [4℄, proposition VI.2 gives a solution �(t) of the problem (81), (82) and (83) expressed with the

propagator U

V

l;�

(t; s):

Proposition 6.1

If �

s

2 D(D

V

l;�

;s

), then there exists a unique solution [�(:)℄

H

= [U

V

l;�

(:; s)�

s

℄

H

2 C

1

(R

t

; L

2

R

) \

C

0

(R

t

; H

1

R

) of (81), (82) and (83) :

�(t) 2 D(D

V

l;�

;t

):
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Moreover,

k�(t)k

t

= k�

s

k

s

(86)

and U

V

l;�

(t; s) 
an be extended in an isometri
 strongly 
ontinuous propagator from L

2

s

onto L

2

t

, and for

an R > z(s)

(x > R) �

s

(r

�

; !) = 0)) (x > R+ jt� sj ) [U

V

l;�

(t; s)�

s

℄(r

�

; !) = 0):

Thanks to the notations (69) and (71), we give the important relations 
onne
ting propagator U

V

(t; s)

with U (t; s) de�ned in proposition (3.1):

U (t; s) = e

i(s�t)

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

(t; s)R

�

ln

: L

2

s

=

M

(l;n)2I

E

�

ln

L

2

s

! L

2

t

=

M

(l;n)2I

E

�

ln

L

2

t

: (87)

Subsequently, to simplify the notations, we forget subs
ripts ln and � in the above one dimensional

problem. Given a interval B := (a; b) � R

r

�

and V 2 L

1

(R

r

�

), then, on L

2

(B)

4

we de�ne the self-

adjoint operator D

V;B

with the dense domain D(D

V;B

) su
h that

D

V;B

= �

1

�

r

�

+ V; (88)

D(D

V;B

) =

�

� 2 L

2

(B)

4

; D

V;B

� 2 L

2

(B)

4

; r

�

2 �B ) ~n


1

�(r

�

) = i�(r

�

)

	

; (89)

where ~n is the outgoing normal of B and �

1

given by (23). Hen
e by the Kato-Relli
h and spe
tral

theorem, the problem

�

t

� = iD

V;B

�; �(t = 0)	

0

; (90)

is solved with the help of the propagator U

V;B

(t), following the proposition:

Proposition 6.2

Given �

0

2 D(D

V;B

), then there exists a unique solution �(:) = U

V;B

(:)�

0

2 C

0

(R

t

;D(D

V;B

)) \

C

1

(R

t

; L

2

(B)

4

) and

k�(t)k = k�

0

k:

Moreover, U

V;B

(t) 
an be extended, by density and 
ontinuity, in strongly unitary group on L

2

(B)

4

.

In some useful parti
ular 
ases, we have an expli
it formula:

Lemma 6.1

Given �

0

= (�

0

1

;�

0

2

;�

0

3

;�

0

4

) 2 L

2

s

for t � s, then �(t; r

�

) = U

0

(t; s)�

0

(r

�

) is given by

r

�

> z(t) : �

2

(t; r

�

) = �

0

2

(r

�

� t+ s); �

3

(t; r

�

) = �

0

3

(r

�

� t+ s);

r

�

> z(t) + s� t : �

1

(t; r

�

) = �

0

1

(r

�

+ t� s); �

4

(t; r

�

) = �

0

3

(r

�

+ t� s);

z(t) < r

�

< z(t) + s� t : �

1

(t; r

�

) = �Z(�(r

�

+ t))�

0

3

(r

�

+ t+ s� 2�(r

�

+ t));

z(t) < r

�

< z(t) + s� t : �

4

(t; r

�

) = Z(�(r

�

+ t))�

0

2

(r

�

+ t+ s� 2�(r

�

+ t));

where � is de�ned by (7). Given �

0

2 L

2

(B)

4

, with B =℄ �1; a℄ or [a;+1[, a 2 R [ f�1;+1g and

Æ 2 R, then, if B =℄�1; a℄, �(t; r

�

) = U

Æ;B

(t)�

0

(r

�

) is given by

�(t; r

�

) =

8

<

:

e

iÆt t

�

�

0

3

(2a� r

�

� t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);��

0

2

(2a� r

�

� t)

�

; r

�

+ t � a;

e

iÆt t

�

�

0

1

(r

�

+ t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);�

0

4

(r

�

+ t)

�

; r

�

+ t � a; r

�

� t � a;

e

iÆt t

�

�

0

1

(r

�

+ t);��

0

4

(2a� r

�

+ t);�

0

1

(2a� r

�

+ t);�

0

4

(r

�

+ t)

�

; r

�

� t � a;

and, if B = [a;+1[, by

�(t; r

�

) =

8

<

:

e

iÆt t

�

�

0

1

(r

�

+ t);�

0

4

(2a+ t� r

�

);��

0

1

(2a+ t� r

�

);�

0

4

(r

�

+ t)

�

; r

�

� t � a;

e

iÆt t

�

�

0

1

(r

�

+ t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);�

0

4

(r

�

+ t)

�

; r

�

� t � a; r

�

+ t � a;

e

iÆt t

�

��

0

3

(2a� r

�

� t);�

0

2

(r

�

� t);�

0

3

(r

�

� t);�

0

2

(2a� r

�

� t)

�

; r

�

+ t � a:

Proof:

The result follows from the study of the 
hara
teristi
s of problems (81)-(82) and (84).
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6.2 Proof of theorem 4.1 on the s
attering theory

Before proving theorem 4.1, we state the following proposition 
on
erning the spe
tral properties of D

BH

and D

BH

.

Proposition 6.3

If � � 0, then

�(D

BH

) = �

a


(D

BH

) = R (91)

and

�(D

BH

) = �

a


(D

BH

) = R: (92)

with D

BH

and D

BH

given by (78)(80) and (22)(25).

Proof:

When � = 0 the properties (91) and (92) have been proved in [19℄. If � > 0 the proof remains essentially

similar. Prin
ipally, our demonstration in [19℄ bases one's argument on the Mourre theory and, in this

work, when � = 0, we wrote

�D

BH

= ��

1

�

r

�

+ V

q

+ V

l

+ V

m

V

q

:=

qQ

r

; V

l

:= �(l + 1=2)�

2

p

F (r)

i

r

; V

m

:=

p

F (r)�

4

= m

p

F (r)


0

:

The main diÆ
ulty of this proof is the obtaining of Mourre inequality. To do this, we must 
hoose an

appropriate 
onjugate operator A. But, we remark that

lim

r

�

!�1

V

q

=

qQ

r

0

:

For the positive energies, when qQ < 0 (respe
tively for negative energies and qQ > 0), we obtain easily

this inequality if A is the 
lassi
al generator of dilations. But, when qQ > 0 (respe
tively qQ < 0), this


hoi
e of 
onjugate operator does not allows us to obtain the result. Indeed, if we put h = �D

BH

and


onsider the 
ase qQ > 0, then we obtain the following equality (in sense of the quadrati
 forms in H

1

R

):

�(h)i[h;A℄�(h) � ("� qQr

�1

)�

2

(h) + k; " > 0; A := �

i

2

(r

�

�

r

�

+ �

r

�

r

�

) ;

where k is a L

2

R


ompa
t operator and � 2 C

1

0

(R) su
h that supp� � R

+

�

�fmg. Then, to over
ome the

problem, we put:

A := �

i

2

(r

�

�

r

�

+ �

r

�

r

�

) +

qQ

r

0




0




1

r

�

J

�

(r

�

); J

�

2 C

1

(R

r

�

); J

�

(r

�

) =

�

1 r

�

� �3

0 r

�

� �2

:

With this 
hoi
e, the Mourre assumptions are satis�ed and sin
e qQr

�1

0

� qQr

�1

� 0, we have:

�(h)i[h;A℄�(h) � ("+ qQr

�1

0

J

�

� qQr

�1

J

�

)�

2

(h) + k

0

� "�

2

(h) + k

0

;

with " > 0 and k

0

is a 
ompa
t operator on L

2

R

. When � > 0, the result be
omes widespread. Indeed,

we put

e

h := h�

qQ

r

+

:

Then, for the diÆ
ult 
ases, we de�ne

A := �

i

2

(r

�

�

r

�

+ �

r

�

r

�

) + qQ

�

1

r

0

�

1

r

+

�




0




1

r

�

J

�

(r

�

):
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Therefore, for qQ > 0 and supp� � R

+

�

� fmg, we obtain:

�(h)i[h;A℄�(h) � "�

2

(h) + qQJ

�

(r

�1

0

� qQr

�1

+

)�

2

(h)� qQJ

�

(r

�1

� qQr

�1

+

)�

2

(h) + k

00

� "�

2

(h) + k

00

; " > 0;

with " > 0 and k

00

is a L

2

R

-
ompa
t operator on L

2

R

. To �nish, as in [4℄, we 
he
k that D

BH

has no

eigenvalues when � � 0.

Proof of theorem 4.1:

The 
ase where � = 0 was proved in [19℄ and we 
onsider only the 
ase � > 0. Given two self-adjoint

operators A on H

A

and B on H

B

, we formally de�ne the wave operators

W

�

(A;B;J ) = s� lim

t!�1

e

�itA

J e

itB

P

a


(B); (93)

where P

a


(B) is the proje
tor on the absolutely 
ontinuous subspa
e of B and J the bounded identifying

operator between H

B

and H

A

. When H

A

= H

B

and J = Id, we denote W

�

(A;B; Id) simply by

W

�

(A;B). First, we separate the problems at the horizon and at in�nity. To do this, we use the

self-adjoint operator D

�

BH

�D

+

BH

on L

2

BH

, su
h that :

D

�

BH

;D

+

BH

:= �

qQ

r

+ �

1

�

�

r

�

+

F (r)

r

+

1

4

F (r)

�

+

p

F (r)

�

�

2

r

(�

�

+

1

2


ot �) +

�

3

r sin �

�

'

+ �

4

�

;

D

�

D

�

BH

�

=

n

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

;

D

�

BH

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

; 


1

	(1; :) = i	(1; :)

o

;

D

�

D

+

BH

�

=

n

	 2 L

2

([1;+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

;

D

+

BH

	 2 L

2

([1;+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

;�


1

	(1; :) = i	(1; :)

o

:

Thanks to formula (78) we redu
e D

BH

on L

2

BH

by D

BH

on L

2

BH

. In the same way, via operators (70) and

(72), we 
an also redu
e D

�

BH

�D

+

BH

on L

2

BH

by the self-adjoint operator D

�

BH

� D

+

BH

with the dense

domain D (D

�

BH

) � D (D

+

BH

) = P

r

[D

�

D

V

BH

;℄�1;1℄

�

� D

�

D

V

BH

;[1;+1[

�

℄ using de�nitions (79), (88) and

(89). Sin
e

(D

BH

� i)

�1

� (D

�

BH

�D

+

BH

� i)

�1

is of �nite rank and thus tra
e 
lass on L

2

BH

, Birman-Kuroda theorem (see [23℄) assures that

W

�

�

D

BH

; D

�

BH

�D

+

BH

�

exists on L

2

BH

and

Ran

�

W

�

�

D

BH

; D

�

BH

�D

+

BH

��

= P

a


(D

BH

)L

2

BH

:

Therefore, the following wave operator

W

�

�

D

BH

;D

�

BH

�D

+

BH

�

=

M

(l;n)2I

E

BH

ln

W

�

�

D

BH

; D

�

BH

�D

+

BH

�

R

BH

ln

(94)

exists on L

2

BH

, and

Ran

�

W

�

�

D

BH

;D

�

BH

�D

+

BH

��

= P

a


(D

BH

)L

2

BH

: (95)

Now, as

jr � r

0

j � O

�

e

2�

0

r

�

�

r

�

! �1; jr � r

+

j � O

�

e

2�

+

r

�

�

r

�

! +1;
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we 
ompare respe
tively, the self-adjoint operatorsD

�

BH

andD

�

 

on L

2

(℄�1; 1℄

r

�

�S

2

!

)

4

with the dense

domain D(D

�

 

), given by

D

�

 

:= �

1

�

r

�

�

qQ

r

0

;

D(D

�

 

) =

�

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

;

D

�

 

	 2 L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

; 


1

	(1; :) = i	(1; :)

	

;

and, the self-adjoint operators D

+

BH

and D

+

�;!

on L

2

([1;+1[

r

�

�S

2

!

)

4

with the dense domain D(D

+

�;!

),

given by

D

+

�;!

:= �

1

�

r

�

�

qQ

r

+

;

D(D

+

�;!

) =

�

	 2 L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

;

D

+

�;!

	 2 L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

; � 


1

	(1; :) = i	(1; :)

o

:

We introdu
e J

r

su
h that

J

r

: 	(r

�

; !)! J

r

(	)(r

�

; !) = r

�1

F

�1=4

(r)	(r

�

; !) (96)

and we apply respe
tively lemma 4.11 in [19℄ to W

�

(J

�1

r

D

+

BH

J

r

;D

+

�;!

) on L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

and to W

�

(J

�1

r

D

�

BH

J

r

;D

�

 

) on L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

. Hen
e

W

�

(D

�

BH

;D

�

 

;J

r

)

�

resp: W

�

(D

+

BH

;D

+

�;!

;J

r

)

�

(97)

exists on L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

(resp. L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

), and

Ran

�

W

�

(D

�

BH

;D

�

 

;J

r

)

�

= P

a


(D

�

BH

)L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

(98)

�

resp: Ran

�

W

�

(D

+

BH

;D

+

�;!

;J

r

)

�

= P

a


(D

+

BH

)L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

�

: (99)

We introdu
e the operators J

�

�

and J

�

+

respe
tively as the adjoint of

J

�

: 	! J

�

	 =

�

�

�

	 r

�

� 1

0 r

�

� 1

; �

�

2 C

1

(R

r

�

); 9 a; b; a < b < 1; �

�

(r

�

) =

�

1 r

�

< a

0 r

�

> b

(100)

and

J

+

: 	! J

+

	 =

�

�

+

	 r

�

� 1

0 r

�

� 1

; �

+

2 C

1

(R

r

�

); 9 a; b; 1 < a < b; �

+

(r

�

) =

�

1 r

�

> b

0 r

�

< a

:

(101)

Sin
e D

�

 

on L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

and D

 

on L

2�

 

have spheri
al symmetry, we use lemma 6.1

whi
h gives the expli
it 
al
ulation of the unitary group generated by these self-adjoint operators. Hen
e,

for all 	

0

2 C

1

0

(℄�1; 1℄

r

�

�S

2

!

)

4

and sin
e �

r

�

�

�

is 
ompa
tly supported and supp(�

2

�

� 1) � [a;+1[:










�

D

 

J

�

�J

�

D

�

 

�

e

itD

�

 

	

0










L

2

 

=










(�

r

�

�

�

) e

itD

�

 

	

0










L

2

(℄�1;1℄

r

�

�S

2

!

; dr

�

d!)

4

2 L

1

(R

t

);










�

J

�

�

J

�

� 1

�

e

itD

�

 

	

0










L

2

(℄�1;1℄

r

�

�S

2

!

; dr

�

d!)

4

! 0; t! �1:
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Therefore, by a standard density argument, the wave operator W

�

(D

 

;D

�

 

;J

�

) exists and is an isom-

etry on L

2

(℄�1; 1℄

r

�

�S

2

!

; dr

�

d!)

4

. Moreover, if we take 	 2 L

2�

 

\C

1

0

(R

r

�

�S

2

!

)

4

su
h that, for real

R > 0, supp	

�

0

� [R+ 1;�R+ 1℄, we obtain for �T ? �R :

J

�

�

e

iTD

 

	

�

0

= e

�itD

�

 

J

�

�

e

i(T+t)D

 

	

�

0

8t 2 R;







�

J

�

J

�

�

� 1

�

e

itD

 

	

�

0







L

2

 

! 0; t! �1;

sin
e supp(�

2

�

� 1) � [a;+1[. Therefore, by density, the following wave operator

W

�

(D

�

 

;D

 

;J

�

�

) (102)

exists on L

2�

 

, and

Ran

�

W

�

(D

�

 

;D

 

;J

�

�

)

�

= P

a


(D

�

 

)L

2

(℄�1; 1℄

r

�

� S

2

!

; dr

�

d!)

4

: (103)

Using again the lemma 6.1, whi
h gives the expli
it 
al
ulation of the unitary group generated by the

self-adjoint operator D

+

 

on L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

, as above and in the same way, we dedu
e that

the wave operator :

W

�

(D

+

�;!

;D

�;!

;J

�

+

) (104)

exists on L

2�

�;!

, and

Ran

�

W

�

(D

+

�;!

;D

�;!

;J

�

+

)

�

= P

a


(D

+

�;!

)L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

: (105)

We de�ne the operators :

J

�

 

: L

2

(℄�1; 1℄

r

�

� S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

! L

2

BH

; 	 7! J

�

 

	 =

�

	 r

�

� 1

0 r

�

� 1

(106)

J

+

!

: L

2

([1;+1[

r

�

�S

2

!

; r

2

F

1=2

(r)dr

�

d!)

4

! L

2

BH

; 	 7! J

+

!

	 =

�

	 r

�

� 1

0 r

�

� 1

; (107)

and the 
hain rule applied to (94)(95), (97)(99), (102)(103), (104)(105) assures that

W

�

(D

BH

;D

 

;J

�

 

J

r

J

�

�

)�W

�

(D

BH

;D

�;!

;J

+

!

J

r

J

�

+

)

exists on L

2�

 

� L

2�

�;!

. By proposition 6.3, the spe
trum of D

BH

is purely absolutely 
ontinuous when

� > 0. Hen
e

Ran

�

W

�

(D

BH

;D

 

;J

�

 

J

r

J

�

�

)�W

�

(D

BH

;D

�;!

;J

+

!

J

r

J

�

+

)

�

= L

2

BH

:

Finally

W

�

 

�W

�

!

=W

�

(D

BH

;D

 

;J

�

 

J

r

J

�

�

)�W

�

(D

BH

;D

�;!

;J

+

!

J

r

J

�

+

) in L

2

BH

be
ause for all 	

�

2 L

2�

 

= L

2�

�;!







�

J

 

�J

�

 

J

r

J

�

�

	

e

itD

 

	

�







�







f�

 

� �

�

g e

itD

 

	

�







L

2

(℄�1;1℄

r

�

�S

2

!

; dr

�

d!)

4

! 0; t! �1; (108)










�

J

�;!

�J

+

!

J

r

J

�

+

	

e

itD

�;!

	

�










�










f�

!

� �

+

g e

itD

�;!

	

�










L

2

([1;+1[

r

�

�S

2

!

; dr

�

d!)

4

! 0; t! �1:

(109)

Indeed, taking 	

�

2 L

2�

 

\ C

1

0

(R

r

�

� S

2

!

)

4

= L

2�

�;!

\ C

1

0

(R

r

�

� S

2

!

)

4

we have

e

itD

 

	

�

(r

�

) = e

itqQr

�1

0

	

�

(r

�

� t); e

itD

�;!

	

�

(r

�

) = e

itqQr

�1

+

	

�

(r

�

� t)

and, sin
e �

 

� �

�

and �

!

� �

+

are 
ompa
tly supported, by density we obtain the limits (108) and

(109) for all 	

�

2 L

2�

 

= L

2�

�;!

.
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6.3 Sharp estimate of 1

[0;+1[

(D

0

)U(0; T ): proof of theorem 5.2

We brie
y des
ribe the steps of the proof. First, we take advantage of the spheri
al invarian
e to redu
e

our study to a one dimensional problem. Sin
e with (74), (75) and (87) we have

1

[0;+1[

(D

0

)U (0; T ) = e

�iTÆ

M

(l;n)2I

E

�

ln

1

[Æ;+1[

(D

V

l;�

;0

)U

V

l;�

(0; T )R

�

ln

; Æ :=

qQ

r

0

;

it is suÆ
ient to study the propagator 1

[Æ;+1[

(D

V

l;�

;0

)U

V

l;�

(0; T ). Now, to simplify the notations, we

forget subs
ripts ln and �. We 
hoose J 2 C

1

(R

r

�

) satisfying

9 a; b 2 R; 0 < a < b < 1 J (r

�

) =

�

1 r

�

< a

0 r

�

> b

(110)

and split in two parts our investigation:

1

[Æ;+1[

(D

V;0

)U

V

(0; T ) = 1

[Æ;+1[

(D

V;0

)JU

V

(0; T ) + 1

[Æ;+1[

(D

V;0

)(1�J )U

V

(0; T ): (111)

Far from the star, we treat the term 1

[Æ;+1[

(D

V;0

)(1 � J )U

V

(0; T ) using theorem 4.1 on the s
attering

by the eternal bla
k-hole. Indeed, we have:

1

[Æ;+1[

(D

V;0

)(1�J )U

V

(0; T ) = 1

[Æ;+1[

(D

V;0

)(1�J )U

V;R

(�T );

seeing that

U (t) = e

�it

qQ

r

0

M

(l;n)2I

E

�

ln

U

V

l;�

;R

(t)R

�

ln

where U

V

l;�

;R

is de�ned by proposition 6.2. Near the star, with �

0

in ad-ho
 dense subspa
e on L

2

R

, we note

that JU

V

(0; T )�

0

is given by J�

V;g

T

(0; r

�

). The fun
tion �

V;g

T

(t; r

�

) is the only solution of the mixed


hara
teristi
 problem (81) and (82) with initial data g

T

(t) spe
i�ed on the 
hara
teristi
 sub-manifold

� := f(t; r

�

) 2 R

t

� [z(t);+1[; r

�

= 1� tg su
h that

g

T

(t) :=

t

(0; [U

V

(t; T )�

0

(1� t)℄

2

; [U

V

(t; T )�

0

(1� t)℄

3

; 0); 9 t

g

> 0 : t > t

g

) g

T

(t) = 0:

Con
urrently, in L

2

norm, we prove that

g

T

(t) � g

T

2

(t) := (W

�

0;R

�

0

)(1� 2t� T ); T ! +1;

where the wave operator W

�

0;R

is de�ned in lemma 6.3, seeing that

P

r

�

W

�

 

�

�

=

M

(l;n)2I

E

�

ln

W

�

0;R

R

�

ln

: (112)

Then, in L

2

0

norm we obtain

1

[Æ;+1[

(D

V;0

)JU

V

(0; T )�

0

� 1

[Æ;+1[

(D

V;0

)J�

V;g

T=2

� 1

[0;+1[

(D

0;0

)J�

0;g

T=2

; T ! +1:

The last term entails asymptoti
ally an expli
it 
al
ulation whi
h leads to a term of KMS-type depending

onW

�

0;R

. This proof using the 
hara
teristi
 problem allows us to easily introdu
e the wave operatorW

�

0;R

.

This operator is 
onne
ted with the 
urvature of the spa
e-time at the vi
inity of the eternal bla
k-hole

horizon. To �nish, we prove that the two terms on the right hand side in (111) are asymptoti
ally

orthogonal as T ! +1.
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6.3.1 Preliminary estimate for 1

[Æ;+1[

(D

V;0

)U

V

(0; T )

In this part, we use the notations introdu
e by formulas (74) (75), (88) (89) and propositions (6.1)(6.2).

Therefore, we note that

D

V;0

= D

V;[z(0);+1[

; L

2

0

= L

2

([z(0);+1[

r

�

; dr

�

)

4

: (113)

Sin
e D

BH

= e

�i

�

2




5

P

r

D

V;R

e

i

�

2




5

P

�1

r

�

qQ

r

0

, then, thanks to proposition 6.3, we have �(D

V;R

) = �

a


(D

V;R

)

and therefore we dedu
e the following lemma of lo
al energy de
ay:

Lemma 6.2

If � � 0, then

lim

t!�1







f U

V;R

(t)�







= 0;

with f 2 C

0

(R;M

4

(C )) and lim

r

�

!�1

jf(r

�

)j = 0:

Proof:

We 
onsider the dense subspa
e L

d

(D

V;R

) in L

2

R

su
h that

L

d

(D

V;R

) =

�

� 2 L

2

R

; B � R; jBj < +1; 1

B

(D

V;R

)� = �

	

:

As �(D

V;R

) = �

a


(D

V;R

), we have U

V;R

(t)* 0; t! �1. Then for all � 2 L

d

(D

V;R

)

lim

t!�1







f 1

B

(D

V;R

)U

V;R

(t)�







= 0;

be
ause f1

B

(D

V;R

) is 
ompa
t on L

2

R

following proposition B.7.1 in [7℄. Hen
e, by a density argument,

the limit is proved for � 2 L

2

R

.

We 
hoose a 
ut-o� fun
tion � 2 C

1

(R

r

�

), su
h that

9 a; b 2 R; �1 < a < b < +1 �(r

�

) =

�

1 r

�

< a

0 r

�

> b

; (114)

and the subspa
es L

2+

R

, L

2�

R

of L

2

R

, satisfying :

L

2+

R

=

�

� 2 L

2

R

; �

2

� �

3

� 0

	

; L

2�

R

=

�

� 2 L

2

R

; �

1

� �

4

� 0

	

:

Therefore, we state the lemma:

Lemma 6.3

The wave operators

W

�

0;R

= s� lim

t!�1

U

0;R

(�t)�U

V;R

(t); in L

2

R

W

�

V;[z(0);+1[

= s� lim

t!�1

U

V;[z(0);+1[

(�t)(1� �)U

V;R

(t) in L

2

0

= L

2

([z(0);+1[

r

�

; dr

�

)

4

exist and are independent of � satisfying (114). Moreover

Ran

�

W

�

0;R

�

= L

2�

R

; Ran

�

W

�

V;[z(0);+1[

�

= P

a


�

D

V;[z(0);+1[

�

L

2

0

(115)

where P

a


�

D

V;[z(0);+1[

�

is the proje
tor on the absolutely 
ontinuous subspa
e of D

V;[z(0);+1[

, and for

f 2 H

1

R

lim

t!�1










U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f










H

1

R

= 0: (116)
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Proof:

For the wave operator W

�

0;R

, the existen
e and property (115) are 
ontained in theorem 4.1, sin
e (112)

exists and is an isometry from L

2

BH

onto L

2

BH

:= P

r

L

2

 

. For W

�

V;[z(0);+1[

, we note that

�

D

V;℄�1;z(0)℄

�D

V;[z(0);+1[

� i

�

�1

�

�

D

V;R

� i

�

�1

is of �nite rank. Then, with the notations (93) introdu
ed in the proof of theorem 4.1, we obtain by the

Birman-Kuroda theorem the existen
e on L

2

R

of the wave operator

W

�

�

D

0;℄�1;z(0)℄

; D

V;R

;J

1

�

�W

�

�

D

V;[z(0);+1[

; D

V;R

;J

2

�

=W

�

�

D

0;℄�1;z(0)℄

�D

V;[z(0);+1[

; D

V;R

�

;

where

J

1

: � 2 L

2

R

7! J

1

� = �

j

℄�1;z(0)℄

2 L

2

(℄�1; z(0)℄

r

�

; dr

�

)

4

;

J

2

: � 2 L

2

R

7! J

2

� = �

j

[z(0);+1[

2 L

2

([z(0);+1[

r

�

; dr

�

)

4

= L

2

0

;

with the property

Ran

�

W

�

�

D

V;℄�1;z(0)℄

�D

V;[z(0);+1[

; D

V;R

��

=

�

P

a


�

D

V;℄�1;z(0)℄

�

� P

a


�

D

V;[z(0);+1[

��

L

2

R

:

Now, we must show the equality:

W

�

V;[z(0);+1[

=W

�

�

D

V;[z(0);+1[

; D

V;R

;J

2

�

: (117)

It arises from lemma 6.2. Indeed, for all � 2 L

2

R

, we have







[J

2

� (1� �)℄U

V;R

(t)�







L

2

0

�







1

[z(0);+1[

�U

V;R

(t)�







! 0; t! �1;

be
ause lim

jr

�

j!+1

1

[z(0);+1[

� = 0. Now we prove property (116). Sin
e wave operatorW

�

0;R

exists, then

W

�

0;R

D

V;R

= D

0;R

W

�

0;R

:

Given f 2 H

1

R

= D(D

V;R

), then there exists � 2 L

2

R

su
h that � = D

V;R

f . Therefore, with the previous

formula










U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f










H

1

R

�










D

0;R

U

0;R

(t)

�

W

�

0;R

f

�

� �D

V;R

U

V;R

(t)f










+







�

�V + [�;D

0;R

℄

	

U

V;R

(t)f







+










U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f










;

=










U

0;R

(t)

�

W

�

0;R

�

�

� �U

V;R

(t)�










+







�

�V + [�;D

0;R

℄

	

U

V;R

(t)f







+










U

0;R

(t)

�

W

�

0;R

f

�

� �U

V;R

(t)f










:

The �rst and the third norm on the right hand side are treated by the previous s
attering results for

W

�

0;R

, and the se
ond using lemma 6.2, sin
e lim

r

�

!�1

(j�V j+ j[�;D

0;R

℄j) = 0.

Now, we solve the 
hara
teristi
 Cau
hy problem

Lemma 6.4

For any g :=

t

(0; g

2

; g

3

; 0) 2 H

1

R

, su
h that t > t

g

) g(t) = 0, then there exists an unique solution � of

�

t

� = i�

1

�

r

�

�+ iV �; t 2 R; z(t) < r

�

< �t+ 1; (118)

�

4

(t; z(t)) = Z(t)�

2

(t; z(t)); �

1

(t; z(t)) = �Z(t)�

3

(t; z(t)); t 2 R; (119)

(0;�

2

;�

3

; 0)(t;�t+ 1) = g(t); t 2 R; (120)

t > t

g

; r

�

2 [z(t);�t+ 1℄) �(t; r

�

) = 0; (121)

with

e

� 2 C

1

(R

t

; L

2

R

) \ C

0

(R

t

; H

1

R

) su
h that

t 2 R; r

�

2 [z(t);�t+ 1℄) �(t; r

�

) =

e

�(t; r

�

): (122)
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Proof:

We prove the uniqueness. Given � a solution of the problem for g � 0 su
h that

e

� 2 C

1

(R

t

; L

2

R

) \

C

0

(R

t

; H

1

R

) and z(t) < r

�

)

e

�(t; r

�

) = �(t; r

�

). We have for t 2 R:

d

dt

Z

�t+1

z(t)

j�j

2

(t; r

�

)dr

�

= � j�j

2

(t;�t+ 1)� _z(t) j�j

2

(t; z(t)) + 2

Z

�t+1

z(t)

< < �

t

�;� >

C

4

(t; r

�

)dr

�

;

= �2 j�

2

j

2

(t;�t+ 1)� 2 j�

3

j

2

(t;�t+ 1)

+ 2

Z

�t+1

z(t)

< < �

t

�� i�

1

�

r

�

	� iV�;� >

C

4
(t; r

�

)dr

�

:

Sin
e �(t; r

�

) satis�es equation (118), then

d

dt

Z

�t+1

z(t)

j�j

2

(t; r

�

)dr

�

= �2 j�

2

j

2

(t;�t+ 1)� 2 j�

3

j

2

(t;�t+ 1): (123)

Integrating (123) on [t; T ℄, T > t

g

with respe
t to time, we obtain with (121),

Z

�t+1

z(t)

j�j

2

(t; r

�

)dr

�

= 2

Z

+1

t

jgj

2

(�)d� � 2kgk

2

: (124)

Therefore, sin
e g � 0 then � � 0.

Now, we prove the existen
e of the solution for a regular initial data g = (0; g

2

; g

3

; 0) 2 C

1

0

(R)

4

. First,

we solve the following 
hara
teristi
 problem:

�

t

f

V

= i�

1

�

r

�

f

V

+ iV f

V

; t 2 R; r

�

> �t+ 1; (125)

f

V

(t;�t+ 1) = g(t); t 2 R; (126)

t 2℄1� r

�

; r

�

+ a[ ) f

V

(t; r

�

) = 0; (127)

where

a = inf [supp(g)℄ :

The 
ontinuous solution f

V

of (125), (126) and (127) is given by the 
ontinuous solution of the following

equivalent integral problem:

f

V

(t; r

�

) = F (X = t+ r

�

� 1; T = t� r

�

� a) =

�

g

�

T+a+1

2

�

+ BF (X;T ) X � 0; T > 0;

0 X � 0; T � 0;

; (128)

BF (X;T ) =

i

2

0

B

B

B

B

B

B

�

R

T

0

h

V

�

X���a+1

2

�

F (X; �)

i

1

d�

R

X

0

h

V

�

��T�a+1

2

�

F (�; T )

i

2

d�

R

X

0

h

V

�

��T�a+1

2

�

F (�; T )

i

3

d�

R

T

0

h

V

�

X���a+1

2

�

F (X; �)

i

4

d�

1

C

C

C

C

C

C

A

: (129)

For X � 0; T > 0, putting

F

0

(X;T ) = g

�

T + a+ 1

2

�

; F

n+1

(X;T ) = BF

n

(X;T ); n � 0;

and sin
e, g and V are bounded, we have

�

�

BF

n�1

(X;T )

�

�

� kgk

L

1

kV k

n

L

1

6

n

(X + T )

n

n!

; n � 1:
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Then the Pi
ard method, gives a unique solution F (X;T ) 2 C

0

([0;+1[

X

�R

T

)

4

of (128) su
h that

F (X;T ) =

+1

X

n=0

F

n

(X;T ); jF (X;T )j � kgk

L

1

exp (6 kV k

L

1

(jX j+ jT j)):

Seeing that (X � 0; T � 0)) F (X;T ) = 0, V 2 C

1

(R

r

�

;M

4

(C )) and for X;T � 0

j�

X

F

n

(X;T )j+ j�

Y

F

n

(X;T )j � 16 kgk

L

1

kV k

n

L

1

12

n�1

(X + T )

n�1

(n� 1)!

+ 2 kgk

L

1










V

0










L

1

kV k

n�1

L

1

12

n

(X + T )

n

n!

+










g

0










L

1

kV k

n

L

1

6

n

(X + T )

n

n!

; n � 1;

we have F (X;T ) 2 C

1

(f(X;T ) 2 [0;+1[

X

�R

T

: 2t

g

� X + T + a+ 1g)

4

. Hen
e,

[�

g

℄

H

(:; :) = [U

V

(:; t

g

)�

V

(t

g

; :)℄

H

2 C

1

(R

t

; L

2

R

) \ C

0

(R

t

; H

1

R

); (130)

[�

V

(t

g

; :)℄

H

2 H

1

R

; �

V

(t

g

; r

�

) :=

�

f

V

(t

g

; r

�

) r

�

> �t

g

+ 1;

0 z(t

g

) < r

�

� �t

g

+ 1;

(131)

is a solution of (81), (82), (120) and (121) and in parti
ular of (118), (119), (120) and (121) with

g 2 C

1

0

(R). Moreover we have

d

dt

Z

+1

�t+1

jf

V

j

2

(t; r

�

)dr

�

= 2 jgj

2

(t);

and integrating this formula on [�1; t

g

℄ with respe
t to time, we obtain

Z

+1

�t

g

+1

jf

V

j

2

(t

g

; r

�

)dr

�

= 2 kgk

2

:

Thanks to (130), (131) and (86),

sup

t2R

k[�

g

(t; :)℄

L

k

2

L

2

R

= sup

t2R

k�

g

(t; :)k

2

t

= 2 kgk

2

(132)

and by density and 
ontinuity, we get the existen
e with g 2 H

1

R

.

We introdu
e some notations: For g 2 L

2

R

,

g

T

(:) := g(:� T ); T � 0;

and following the previous lemma, when g :=

t

(0; g

2

; g

3

; 0) 2 H

1

R

, t > t

g

) g(t) = 0, we de�ne the

operator G

V

(g) su
h that

G

V

(g)(r

�

) := J (r

�

)�

V

(0; r

�

); r

�

2 [z(0); 1℄; (133)

with J as in (110) and �

V

(0; r

�

) the solution of (118), (119), (120) and (121). Moreover, by density and

thanks to (124), formula (133) is well de�ned for g 2 L

2

R

, t > t

g

) g(t) = 0. Therefore, we prove the �rst

important estimate:

Lemma 6.5

Given g :=

t

(0; g

2

; g

3

; 0) 2 L

2

R

su
h that t > t

g

) g(t) = 0, then

lim

T!+1







1

[0;+1[

(D

0;0

)

�

G

0

�

g

T

��

L







2

0

= 2 < g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

g >

L

2

R

; (134)

and

�

G

0

�

g

T

��

L

* 0; T ! +1; in L

2

0

: (135)
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Proof:

As the norm of (134) is uniformly bounded in T by (124), it is enough to obtain (134) for g 2 C

1

0

(R)

4

su
h that supp(g) � [0; R℄, R > 0 �xed. For T >

1�z(0)

2

, we have G

0

(g

T

) 2 [z(0); 0[ and thanks to lemma

6.1,

G

0

(g

T

)(r

�

) = Z(�(r

�

))

t

(� g

3

; 0; 0; g

2

)

T

�

�(r

�

) +

1� r

�

2

�

;

with � and Z respe
tively de�ned by (8) and (76). We de�ne spinor G

T

, su
h that

G

T

(r

�

) :=

1

p

��

0

r

�

t

(� g

3

; 0; 0; g

2

)

T

�

�

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1

2

�

; r

�

< 0; (136)

with supp(G

T

) �℄�1; 0[ and the real C

k

> 0 as in (8). In the �rst time, we remark that, for f 2 L

2

R

,

< [G

T

℄

L

; f >

L

2

R

! 0; T ! +1: (137)

Indeed, for f 2 C

1

0

(R)

4

, we have

�

�

�

< [G

T

℄

L

; f >

L

2

R

�

�

�

� kfk

L

1

(R)

4

Z

R

�

�

[G

T

℄

L

�

�

(r

�

)dr

�

= kfk

L

1

(R)

4

Z

0

�1

�

�

G

T

�

�

(r

�

)dr

�

�

q

�

0

C

�

0

e

�2�

0

T+�

0

kfk

L

1

(R)

4

Z

R

e

��

0

y

jgj(y)dy ! 0; T ! +1:

We obtain (137) by density and using the inequality k[G

T

℄

L

k � kgk. Moreover, for T >

1�z(0)

2

, we have,







[G

T

℄

L

�

�

G

0

(g

T

)

�

L







2

0

=

Z

0

z(0)

�

�

G

T

(r

�

)�G

0

(g

T

)

�

�

2

dr

�

:

We remark that: Z(�(r

�

)) 2 C

0

([z(0); 0[) and

lim

r

�

!0

�

h(r

�

) = 1; h(r

�

) :=

p

��

0

r

�

Z(�(r

�

)): (138)

Indeed, thanks to (8) and (9), (138) entails that

h(r

�

) =

p

��

0

r

�

s

1� _z(�(r

�

))

1 + _z(�(r

�

))

=

s

�2�

0

r

�

+O

0

(r

�

2

)

�2�

0

r

�

+O(r

�

2

)

; � 1 < _z(�(r

�

)) � 0; r

�

2 [z(0); 0[:

Therefore, using (8) and putting y(r

�

) = �

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1

2

� T ,







[G

T

℄

L

�

�

G

0

(g

T

)

�

L







2

0

= 2

Z

+1

�

1

2�

0

ln(�z(0))+

1

2�

0

ln(C

�

0

)+

1

2

�T

�

�

g(y)� h

�

�C

�

0

e

�2T�

0

�2y�

0

+�

0

�

g

�

y +O(e

�2T�

0

�2y�

0

+�

0

)

�

�

�

2

dy;

and by Lebesgue theorem, we obtain:







�

G

T

�

L

�

�

G

0

(g

T

)

�

L







2

0

! 0; T ! +1: (139)
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With (137), this last limit gives (135). Finally, for T > �

1

2�

0

ln(�z(0)) +

1

2�

0

ln(C

�

0

) +

1

2

, and denoting

F the Fourier transform, we have







1

[0;+1[

(D

0;0

)[G

T

℄

L







2

0

=

1

2�

Z

+1

0

�

�

F

�

[G

T

℄

L

�

�

�

2

(�)d� (140)

=

C

�

0

�

0

2�

Z

+1

0

�

�

�

�

Z

R

e

iC

�

0

�e

�

0

y

e

�

0

2

y

~g(y)dy

�

�

�

�

2

d�; ~g(y) = g(�y=2);

=< ~g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

~g >

L

2

R

; (lemma III.6 in [4℄);

= 2 < g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

g >

L

2

R

;

whi
h implies, with (139), limit (134).

To prove the following estimate, we need a Gronwall type inequality:

Lemma 6.6

Given J;E

1

; E

2

2 C

0

([a; b℄) and t 2 [a; b℄) E

1

(t); E

2

(t) � 0, su
h that

J(t) � E

2

(t) +E

1

(t)

Z

t

a

J(s)ds; a � t � b; (141)

then

J(t) � E

2

(t) +E

1

(t) exp

�

Z

t

a

E

1

(s)ds

�

Z

t

a

E

2

(s)ds; a � t � b: (142)

Proof:

We put

R(s) = exp

�

�

Z

s

a

E

1

(�)d�

�

Z

s

a

J(�)d�:

We di�erentiate R(s) and using (141):

d

ds

R(s) = J(s) exp

�

�

Z

s

a

E

1

(�)d�

�

�E

1

(s) exp

�

�

Z

s

a

E

1

(�)d�

�

Z

s

a

J(�)d�;

� E

2

(s) exp

�

�

Z

s

a

E

1

(�)

�

:

As R(a) = 0, integrating the result on [a; t℄, we obtain

R(t) �

Z

t

a

E

2

(s) exp

�

�

Z

s

a

E

1

(�)d�

�

ds:

Sin
e s 2 [a; t℄ and E

1

is non negative:

exp

�

�

Z

s

a

E

1

(�)d�

�

� 1:

Hen
e

Z

t

a

J(s)ds � exp

�

Z

t

a

E

1

(�)d�

�

Z

t

a

E

2

(s)ds;

and (142) follows.
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Lemma 6.7

Given g :=

t

(0; g

2

; g

3

; 0) 2 L

2

R

su
h that t > t

g

) g(t) = 0, then

lim

T!+1







�

G

0

�

g

T

��

L

�

�

G

V

�

g

T

��

L







2

0

= 0; (143)

and

�

G

V

�

g

T

��

L

* 0; T ! +1; in L

2

0

: (144)

Proof:

With (124), it is enough to obtain the result for g 2 C

1

0

(R)

4

su
h that supp(g) � [0; R℄, R > 0 �xed. By

lemma 6.4, formulas (130) and (131), for r

�

2 [z(0); 1℄, we have

G

V

�

g

T

�

(r

�

) = J (r

�

) [U

V

(0; R+ T )�

V

(R + T; :)℄ (r

�

);

�

V

(R+ T; r

�

) =

�

f

V

(R+ T; r

�

) r

�

> �R� T + 1;

0 z(R+ T ) < r

�

� �R� T + 1:

(145)

Now, for r

�

2 [z(0); 1℄, we write

�

G

V

�

g

T

�

�G

0

�

g

T

��

(r

�

) = J (r

�

) [U

V

(0; R+ T )�

V

(R+ T; :)� U

0

(0; R+ T )�

0

(R + T; :)℄ (r

�

);

= J (r

�

) [U

V

(0; R+ T ) f�

V

(R + T; :)� �

0

(R + T; :)g℄ (r

�

)

�J (r

�

) [fU

0

(0; R+ T )� U

V

(0; R+ T )g�

0

(R+ T; :)℄ (r

�

);

=: A

1

+A

2

:

We estimate A

1

. First, with (145), we have

kA

1

k

2

0

�

Z

+1

z(R+T )

j�

V

(R + T; r

�

)� �

0

(R + T; r

�

)j

2

dr

�

;

=

Z

+1

�R�T+1

jf

V

(R+ T; r

�

)� f

0

(R+ T; r

�

)j

2

dr

�

;

=: J(R+ T ):

But,

d

dt

J(t) = jf

V

� f

0

j

2

(t;�t+ 1) + 2<

Z

+1

�t+1

< �

t

(f

V

� f

0

) (t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4
dr

�

;

=: J

1

+ 2<J

2

:

Sin
e the solutions f

V

and f

0

have the same 
hara
teristi
 data, J

1

= 0. On the other hand, with the

help of equations satis�ed by f

V

and f

0

, we have:

J

2

=

Z

+1

�t+1

< i�

1

�

r

�

(f

V

� f

0

) (t; r

�

) + iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

;

= �

Z

+1

�t+1

< (f

V

� f

0

) (t; r

�

); i�

1

�

r

�

(f

V

� f

0

) (t; r

�

) >

C

4
dr

�

+

Z

+1

�t+1

< iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

;

= �

Z

+1

�t+1

< (f

V

� f

0

) (t; r

�

); i�

1

�

r

�

(f

V

� f

0

) (t; r

�

) + iV f

V

(t; r

�

) >

C

4

dr

�

+ 2<

Z

+1

�t+1

< iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

;

= �

�

J

2

+ 2<

Z

+1

�t+1

< iV f

V

(t; r

�

); (f

V

� f

0

) (t; r

�

) >

C

4

dr

�

:
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Then

d

dt

J(t) = 2<

Z

+1

�t+1

< V (r

�

)f

V

(t; r

�

); f

V

(t; r

�

)� f

0

(t; r

�

) >

C

4

dr

�

: (146)

In lemma 6.4, we have proved that the solution f

V

(t; x) propagates at speed one . Therefore, for t 2

[T; T +R℄, we have

supp

�

g

T

�

� [T; T +R℄) supp (f

V

(t; :)) � [�t+ 1; t� 2T + 1℄; T; R > 0; (147)

) J(0) = 0:

Hen
e, integrating (146) on [0; T +R℄, we obtain:

J(R+ T ) = 2<

Z

T+R

0

Z

+1

�t+1

< V (r

�

)f

V

(t; r

�

); f

V

(t; r

�

)� f

0

(t; r

�

) >

C

4

dr

�

dt:

By the Cau
hy-S
hwartz inequality,

J(R + T ) � 2

Z

T+R

0

Z

+1

�t+1

j< V (r

�

)f

V

(t; r

�

); f

V

(t; r

�

)� f

0

(t; r

�

) >j dr

�

dt;

� 2

Z

T+R

0

�

Z

+1

�t+1

jV (r

�

)f

V

(t; r

�

)j

2

dr

�

�

1=2

J(t)

1=2

dt:

Thanks to the remark (147) and as

p

x � x+ 1 for x � 0, then we dedu
e that

J(R + T ) � E

2

(T +R) +E

1

(T +R)

Z

T+R

0

J(t)dt;

E

1

(t) := 4kgk supfjV (x)j; x � �t+ 2R+ 1g ; E

2

(t) := tE

1

(t):

As E

1

; J 2 C

0

(R), by lemma 6.6, we have

J(T +R) � E

2

(T +R) +E

1

(T +R) exp

 

Z

T+R

0

E

1

(s)ds

!

Z

T+R

0

E

2

(s)ds:

Sin
e, V (r

�

) is exponentially de
reasing as r

�

! �1, we get

kA

1

k

2

0

� J(R+ T )! 0; T ! +1: (148)

To estimate A

2

, we use the usual formula

fU

0

(0; R+ T )� U

V

(0; R+ T )g�

0

(R + T; :) = �

Z

R+T

0

U

V

(0; s)V U

0

(s;R+ T )�

0

(R + T; :)ds:

Hen
e, we dedu
e with (86) that

kA

2

k

0

� kfU

0

(0; R+ T )� U

V

(0; R+ T )g�

0

(R + T; :)k

0

;

�

Z

R+T

0

kV U

0

(s;R+ T )�

0

(R+ T; :)k

s

ds: (149)

Now we de�ned the time �

T

, su
h that

z(�

T

)� �

T

= �2T + 1:
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Thanks to (6):

�

T

= T �

1

2

+O

�

e

�2�

0

T

�

; T ! +1 (150)

and a

ording lemma 6.1, we have also

s 2 [0; �

T

℄) [U

0

(s;R+ T )�

0

(R + T; :)℄ (r

�

) = Z(�(r

�

))

t

(� g

3

; 0; 0; g

2

)

T

�

�(r

�

) +

1� r

�

� s

2

�

(151)

and

s 2 [0; �

T

℄) supp [U

0

(s;R+ T )�

0

(R + T; :)℄ �

�

�s�

�

�

O(e

�2�

0

T

)

�

�

;�s

�

: (152)

Indeed, for s 2 [0; �

T

℄,

supp [U

0

(s;R+ T )�

0

(R + T; :)℄ � [�s+ 2�

T

� 2T + 1;�s℄ ;

and with (150), (152) follows. Hen
e,

kA

2

k

0

�

Z

�

T

0

kV U

0

(s;R + T )�

0

(R+ T; :)k

s

ds+

Z

R+T

�

T

kV U

0

(s;R+ T )�

0

(R + T; :)k

s

ds;

� A

21

+A

22

:

First, we estimate A

21

. With the help of (152) and (151), we have,

A

21

�

Z

�

T

0

p

I(s)ds:

where

I(s) :=

Z

�s

�s�

j

O(e

�2�

0

T

)

j

�

�

�

�

V (r

�

)Z(�(r

�

))

t

(� g

3

; 0; 0; g

2

)

T

�

�(r

�

) +

1� r

�

� s

2

�

�

�

�

�

2

dr

�

: (153)

Using (8) and putting y(r

�

) = �

1

2�

0

ln(�r

�

) +

1

2�

0

ln(C

�

0

) +

1�s

2

� T , we have

I(s) � 2kV k

2

L

1

Z

y(�s)

y

(

�s�

j

O

(

e

�2�

0

T

)j)

h

2

(r

�

(y; s; T )) jg (y +O(r

�

(y; s; T )))j

2

dy;

� C

z

kV k

2

L

1

kgk

2

L

1

�

ln

�

s+

�

�

O(e

�2�

0

T

)

�

�

�

� ln(s)

�

; C

z

> 0;

with h de�ned in (138). First, for x � 0, log(x+ 1) � x. Hen
e we obtain

Z

�

T

0

p

I(s)ds � C

z;V;g

Z

�

T

0

q

ln (s+ jO(e

�2�

0

T

)j)� ln(s)ds

� C

z;V;g

�

�

O(e

�2�

0

T

)

�

�

Z

+1

C(T )

p

log(x+ 1)

x

2

dx; C(T ) :=

�

�

�

�1

T

O(e

�2�

0

T

)

�

�

;

� C

z;V;g

�

�

O(e

�2�

0

T

)

�

�

 

2

Z

1

C(T )

p

x

x

2

dx+

Z

+1

1

p

log(x + 1)

x

2

dx

!

;

� C

z;V;g

�

q

j�

T

O(e

�2�

0

T

)j+ C

�

�

O(e

�2�

0

T

)

�

�

�

! 0; T ! +1:
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For s 2 [�

T

; T + R℄ we have: supp[U

0

(s;R + T )�

0

(R+ T; :)℄ � [z(s); 2R+ 1� s℄. Hen
e, thanks to (150)

and (132),

A

22

�

Z

R+T

�

T

kV U

0

(s;R+ T )�

0

(R + T; :)k

s

ds

� 2kgk

Z

T+R

�

T

sup fjV (x)j; z(s) � x � 2R+ 1� sg ds! 0; T ! +1:

Then, we obtain that

kA

2

k

0

! 0; T ! +1: (154)

Now, �nally, with (154) and (148), we dedu
e that
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G

0

�

g

T

��

L

�

�

G

V

�

g

T

��
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0

� kA

1

k

0

+ kA

2

k

0

! 0; T ! +1:

Lastly, the above result with (135), entails (144).

Lemma 6.8

Given g :=

t

(0; g

2

; g

3

; 0) 2 L

2

R

su
h that t > t

g

) g(t) = 0, then

lim

T!+1







1

[Æ;+1[

(D

V;0

)

�

G

V

�

g

T

��

L







2

0

= 2 < g; e

2�

�

0

D

0;R

�

1 + e

2�

�

0

D

0;R

�

�1

g >

L

2

R

; (155)

with

Æ =

qQ

r

0

:

Proof:

First, we de�ne V

1

thanks to V su
h that

V

1

:= ÆI

R

4

+ &A

�

= lim

r

�

!+1

V (r

�

); Æ =

qQ

r

0

; & = �m

p

F (r

+

); (156)

where A

�

as in (76). If & < 0 (� = 0), thus by assumption � 6= (2k + 1)�, k 2 Z and from the proof of

lemma III-7 in [4℄, we set that:

1

[0;+1[

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

�

� 1

[0;+1[

�

D

&A

�

;R

�

is 
ompa
t: (157)

For g 2 C

1

0

(R)

4

su
h that supp(g) � [0; R℄, R > 0 �xed, and T > �

1

2�

0

ln(�z(0)) +

1

2�

0

ln(C

�

0

) +

1

2

, we

have supp

�

G

T

�

�℄z(0); 0[ whi
h entails:

1

[0;+1[

�

D

&A

�

;℄�1;z(0)℄

�D

&A

�

;[z(0);+1[

� �

G

T

�

L

= 0� 1

[0;+1[

�

D

&A

�

;[z(0);+1[

� �

G

T

�

L

;

where G

T

is de�ned by (136). Sin
e,

1

[Æ;+1[

�

D

V

1

;0

�

= 1

[0;+1[

�

D

&A

�

;0

�

= 1

[0;+1[

�

D

&A

�

;[z(0);+1[

�

(158)

and a

ording to (137) and (157), we dedu
e that







1
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�

D

&A

�
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� �

G

T

�

L

� 1
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�

D
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�
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� �

G

T

�
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! 0; T ! +1: (159)

Seeing that D

&A

�

;R

is the Dira
 Hamiltonian, using the Fourier transform F :

F1

[0;+1[

�

D

&A

�

;R

�

=

"

1

2

+

1

2

p

�

2

+ &

2

�

i��

1

+ &A

�

�

#

F :
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We remark that

�

�

F

��

G

T

�

L

�

(�)

�

�

2

= 4�

0

B(T )j�(B(T )�)j

2

;

�(B(T )�) :=

Z

R

e

��

0

y

e

i�B(T )e

�2�

0

y

g(y)dy; B(T ) := C

�

0

e

�2�

0

T+�

0

:

Hen
e, thanks to Lebesgue's theorem,
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� �
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�
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�
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�
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�

�
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j�j

�
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�
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2
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�
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1
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�

�

�
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2
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2
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(160)

By (140), we have,
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As k[G
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If & = 0 (� > 0), then we have 
learly:
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Moreover, from lemma III-10 in [4℄, we have
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Then, using respe
tively (143), (164)-(135), (162)-(163) and (134), we 
on
lude that:
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We de�ned a dense subspa
e D

R

of L

2

R

, su
h that,
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where [x℄
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is the jth 
omponent of x 2 C

4

. Moreover

2t � T �R+ 1) g

T

(t) = 0; (167)

2t � �R+ 1) g(t) = 0: (168)
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Lemma 6.9

Given f 2 D

R

, with the de�nitions (165) and (166) we have
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Proof:
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Sin
e, V (s) is exponentially de
reasing as s! �1, by Gronwall lemma we obtain
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On the other hand, using (171) and (172), we have for r
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We de�ne

I :=

Z

+1

0

�

�

�

g

T

(t)� g

T

2

(t)

�

�

�

2

dt

and remark that

g

T

2

(t) =

h

U

0;R

(t� T )

�

W

�

0;R

�i

(�2t+ 1);

g

T

(t) =

t

�

0;

�

U

V;R

(t� T )f

�

2

;

�

U

V;R

(t� T )f

�

3

; 0

�

(�t+ 1):

Therefore, 
hoosing � 2 C

1

(R

r

�

) a 
ut-o� fun
tion su
h that

9 a; b 2 R; �1 < a < b < 0 �(r

�

) =

�

1 r

�

< a

0 r

�

> b

;

and for � > 0 we dedu
e that

I �

Z

+1

0

�

�

�

U

0;R

(t� T )

�

W

�

0;R

f

�

(�t+ 1)� �(�t+ 1)U

V;R

(t� T )f(�t+ 1)

�

�

�

2

dt;

� � sup

����T










U

0;R

(�)

�

W

�

0;R

f

�

� �U

V;R

(�)f










2

L

1

(R)

4

+

Z

+1

�

�

�

�

U

0;R

(t� T )

�

W

�

0;R

f

�

(�t+ 1)� �(t� T;�t+ 1)

�

�

�

2

dt:

By the Sobolev embedding and formula (173), for �; T � 1�R, we obtain
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Thanks to lemma 6.3 and sin
e V (s) is exponentially de
reasing as s! �1, we 
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lude that lim
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Proof:
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A

ording to lemma 6.9
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With limit (176) and lemma 6.7 we obtain (175) for f 2 D
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e all norms are uniformly bounded with
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t to T , lemma is proved by density.

Finally, we prove the main result of this subpart:
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Proof:

With simple 
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A

ording to limit (175) and lemma 6.3 the last term is zero as T ! +1. The two norms are by lemma

6.10 and lemma 6.3.

6.3.2 Proof of theorem 5.2

Now, we prove the key estimate. Using operators (69), (71) and the properties (73), (74) and (87), by
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By lemma 6.3, the wave operator W
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involving the limits (58).
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